Statistical Relational Learning

Relational learning refers to learning from data that have a complex structure. This structure may be either internal (a data instance may itself have a complex structure) or external (relationships between this instance and other data elements). Statistical relational learning refers to the use of statistical learning methods in a relational learning context, and the challenges involved in that. In this chapter we give an overview of statistical relational learning. We start with some motivating problems, and continue with a general description of the task of (statistical) relational learning and some of its more concrete forms (learning from graphs, learning from logical interpretations, learning from relational databases). Next, we discuss a number of approaches to relational learning, starting with symbolic (non-probabilistic) approaches, and moving on to numerical and probabilistic methods. Methods discussed include inductive logic programming, relational neural networks, and probabilistic logical or relational models

[1]  Luc De Raedt,et al.  A Simple Model for Sequences of Relational State Descriptions , 2008, ECML/PKDD.

[2]  Jennifer Neville,et al.  Linkage and Autocorrelation Cause Feature Selection Bias in Relational Learning , 2002, ICML.

[3]  David J. Spiegelhalter,et al.  Bayesian graphical modelling: a case‐study in monitoring health outcomes , 2002 .

[4]  Wannes Meert,et al.  Learning Ground CP-Logic Theories by Leveraging Bayesian Network Learning Techniques , 2008, Fundam. Informaticae.

[5]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[6]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[7]  Luc De Raedt,et al.  Local Query Mining in a Probabilistic Prolog , 2009, IJCAI.

[8]  Ashwin Srinivasan,et al.  Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL , 1998, Machine Learning.

[9]  Ivan Bratko,et al.  First Order Regression , 1997, Machine Learning.

[10]  Guy Van den Broeck,et al.  An exercise with statistical relational learning systems , 2009 .

[11]  Maurice Bruynooghe,et al.  Aggregation versus selection bias, and relational neural networks , 2003 .

[12]  Hannu Toivonen,et al.  Discovery of frequent DATALOG patterns , 1999, Data Mining and Knowledge Discovery.

[13]  Luc De Raedt,et al.  ProbLog Technology for Inference in a Probabilistic First Order Logic , 2010, ECAI.

[14]  Lawrence B. Holder,et al.  Mining Graph Data: Cook/Mining Graph Data , 2006 .

[15]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[16]  Stuart J. Russell,et al.  BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.

[17]  Luc De Raedt Logical and Relational Learning , 2008, SBIA.

[18]  James Cussens,et al.  CLP(BN): Constraint Logic Programming for Probabilistic Knowledge , 2002, Probabilistic Inductive Logic Programming.

[19]  Hendrik Blockeel,et al.  Learning Aggregate Functions with Neural Networks Using a Cascade-Correlation Approach , 2008, ILP.

[20]  Peter A. Flach,et al.  Naive Bayesian Classification of Structured Data , 2004, Machine Learning.

[21]  Lawrence B. Holder,et al.  Mining Graph Data , 2006 .

[22]  Celine Vens,et al.  Refining Aggregate Conditions in Relational Learning , 2006, PKDD.

[23]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[24]  Kristian Kersting,et al.  An inductive logic programming approach to statistical relational learning , 2006, AI Commun..

[25]  Artur S. d'Avila Garcez,et al.  The Connectionist Inductive Learning and Logic Programming System , 1999, Applied Intelligence.

[26]  Luc De Raedt,et al.  Relational Reinforcement Learning , 1998, ILP.

[27]  Joost N. Kok,et al.  The Gaston Tool for Frequent Subgraph Mining , 2005, GraBaTs.

[28]  Peter Haddawy,et al.  Generating Bayesian Networks from Probablity Logic Knowledge Bases , 1994, UAI.

[29]  Taisuke Sato,et al.  PRISM: A Language for Symbolic-Statistical Modeling , 1997, IJCAI.

[30]  J. W. Lloyd,et al.  Logic for Learning , 2003, Cognitive Technologies.

[31]  Philip S. Yu,et al.  Efficient classification across multiple database relations: a CrossMine approach , 2006, IEEE Transactions on Knowledge and Data Engineering.

[32]  Hendrik Blockeel,et al.  Probabilistic logical learning for biclustering: A case study with surprising results , 2010 .

[33]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[34]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[35]  Takashi Washio,et al.  State of the art of graph-based data mining , 2003, SKDD.

[36]  Maurice Bruynooghe,et al.  CP-logic: A language of causal probabilistic events and its relation to logic programming , 2009, Theory and Practice of Logic Programming.

[37]  Hendrik Blockeel,et al.  Classifying Relational Data with Neural Networks , 2005, ILP.

[38]  Robert Givan,et al.  Relational Reinforcement Learning: An Overview , 2004, ICML 2004.

[39]  Lawrence B. Holder,et al.  Substructure Discovery Using Minimum Description Length and Background Knowledge , 1993, J. Artif. Intell. Res..

[40]  Luc De Raedt,et al.  Towards digesting the alphabet-soup of statistical relational learning , 2008 .

[41]  Maurice Bruynooghe,et al.  Logical Bayesian Networks and Their Relation to Other Probabilistic Logical Models , 2005, BNAIC.

[42]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[43]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[44]  Luc De Raedt,et al.  Clausal Discovery , 1997, Machine Learning.

[45]  Peter A. Flach,et al.  Comparative Evaluation of Approaches to Propositionalization , 2003, ILP.

[46]  Stuart J. Russell,et al.  Probabilistic models with unknown objects , 2006 .

[47]  Maurice Bruynooghe,et al.  Learning directed probabilistic logical models: ordering-search versus structure-search , 2007, Annals of Mathematics and Artificial Intelligence.

[48]  Jude W. Shavlik,et al.  Knowledge-Based Artificial Neural Networks , 1994, Artif. Intell..

[49]  Ben Taskar,et al.  Graphical Models in a Nutshell , 2007 .

[50]  Ivan Bratko,et al.  Prolog Programming for Artificial Intelligence , 1986 .

[51]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[52]  Maurice Bruynooghe,et al.  Logic programs with annotated disjunctions , 2004, NMR.

[53]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[54]  Franco Scarselli,et al.  Neural networks for relational learning: an experimental comparison , 2011, Machine Learning.

[55]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[56]  Stefan Wrobel,et al.  Transformation-Based Learning Using Multirelational Aggregation , 2001, ILP.

[57]  Luc De Raedt,et al.  Relational Reinforcement Learning , 2001, Machine Learning.

[58]  Jan Ramon,et al.  Frequent subgraph mining in outerplanar graphs , 2006, KDD.

[59]  Jennifer Neville,et al.  Why collective inference improves relational classification , 2004, KDD.

[60]  Saso Dzeroski,et al.  First order random forests: Learning relational classifiers with complex aggregates , 2006, Machine Learning.

[61]  Luc De Raedt,et al.  Logical Settings for Concept-Learning , 1997, Artif. Intell..

[62]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming , 2004, Probabilistic Inductive Logic Programming.

[63]  David Poole,et al.  First-order probabilistic inference , 2003, IJCAI.

[64]  David Heckerman,et al.  Probabilistic Entity-Relationship Models, PRMs, and Plate Models , 2004 .

[65]  Luc De Raedt,et al.  Probabilistic logic learning , 2003, SKDD.

[66]  Foster J. Provost,et al.  Aggregation-based feature invention and relational concept classes , 2003, KDD '03.

[67]  Hendrik Blockeel,et al.  A Comparison between Neural Network Methods for Learning Aggregate Functions , 2008, Discovery Science.

[68]  Kristian Kersting,et al.  Balios - The Engine for Bayesian Logic Programs , 2004, PKDD.