Coordinates and boundary conditions for the general relativistic initial data problem

Using York's method, the author discusses techniques for numerically constructing GR initial data on a Cauchy surface representing spacetimes containing arbitrary numbers of black holes, each with arbitrary mass, position, (linear) momentum and spin (angular momentum). The initial data slices discussed are maximal and 3-conformally flat. The author restricts the discussion to axisymmetric asymptotically flat vacuum (outside the black holes) slices, although these restrictions are not essential.

[1]  Jonathan Thornburg,et al.  High-level microprogramming with APL syntax , 1981, MICRO 14.

[2]  The Numerical Evolution of the Collision of Two Black Holes. , 1975 .

[3]  Anil D. Kulkarni,et al.  Time‐asymmetric initial data for the N black hole problem in general relativity , 1984 .

[4]  J. York,et al.  Two black holes with axisymmetric parallel spins: initial data , 1984 .

[5]  J. Thornburg An upper limit for the solar acceleration , 1985 .

[6]  J. York Initial data for N black holes , 1983 .

[7]  Graphic displays of gravitational initial data , 1984 .

[8]  J Thornburg 168 Global character string search and replace , 1986, APLQ.

[9]  M. Choptuik,et al.  An introduction to the multi-grid method for numerical relativists , 1986 .

[10]  Jeffrey M. Bowen,et al.  General form for the longitudinal momentum of a spherically symmetric source , 1979 .

[11]  A. R. Mitchell,et al.  The Finite Difference Method in Partial Differential Equations , 1980 .

[12]  Jonathan Thornburg Further notes on the modulo operator , 1985, SIGP.

[13]  A. Schild,et al.  Spacetime and Geometry: The Alfred Schild Lectures , 1982 .

[14]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[15]  Larry Smarr,et al.  Sources of gravitational radiation , 1979 .

[16]  J. York,et al.  Time-asymmetric initial data for black holes and black-hole collisions , 1980 .

[17]  D. Kershaw The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .

[18]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[19]  The structure of general relativity with a numerical illustration: The collision of two black holes , 1975 .

[20]  A. Čadež Apparent horizons in the two-black-hole problem , 1974 .