Coordinates and boundary conditions for the general relativistic initial data problem
暂无分享,去创建一个
[1] Jonathan Thornburg,et al. High-level microprogramming with APL syntax , 1981, MICRO 14.
[2] The Numerical Evolution of the Collision of Two Black Holes. , 1975 .
[3] Anil D. Kulkarni,et al. Time‐asymmetric initial data for the N black hole problem in general relativity , 1984 .
[4] J. York,et al. Two black holes with axisymmetric parallel spins: initial data , 1984 .
[5] J. Thornburg. An upper limit for the solar acceleration , 1985 .
[6] J. York. Initial data for N black holes , 1983 .
[7] Graphic displays of gravitational initial data , 1984 .
[8] J Thornburg. 168 Global character string search and replace , 1986, APLQ.
[9] M. Choptuik,et al. An introduction to the multi-grid method for numerical relativists , 1986 .
[10] Jeffrey M. Bowen,et al. General form for the longitudinal momentum of a spherically symmetric source , 1979 .
[11] A. R. Mitchell,et al. The Finite Difference Method in Partial Differential Equations , 1980 .
[12] Jonathan Thornburg. Further notes on the modulo operator , 1985, SIGP.
[13] A. Schild,et al. Spacetime and Geometry: The Alfred Schild Lectures , 1982 .
[14] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[15] Larry Smarr,et al. Sources of gravitational radiation , 1979 .
[16] J. York,et al. Time-asymmetric initial data for black holes and black-hole collisions , 1980 .
[17] D. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .
[18] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[19] The structure of general relativity with a numerical illustration: The collision of two black holes , 1975 .
[20] A. Čadež. Apparent horizons in the two-black-hole problem , 1974 .