A Two-Stage Image Segmentation Model for Multi-Channel Images

This paper introduces a two-stage model for multi-channel image segmentation, which is motivated by minimal surface theory. Indeed, in the first stage, we acquire a smooth solution u from a convex variational model related to minimal surface property and different data fidelity terms are considered. This minimization problem is solved efficiently by the classical primal-dual approach. In the second stage, we adopt thresholding to segment the smoothed image u . Here, instead of using K-means to determine the thresholds, we propose a more stable hill-climbing procedure to locate the peaks on the 3D histogram of u as thresholds, in the meantime, this algorithm can also detect the number of segments. Finally, numerical results demonstrate that the proposed method is very robust against noise and superior to other image segmentation approaches.

[1]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[2]  Andreas Weinmann,et al.  Fast Partitioning of Vector-Valued Images , 2014, SIAM J. Imaging Sci..

[3]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[4]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Zhicai Zhong Proceedings of the International Conference on Information Engineering and Applications (IEA) 2012 , 2013 .

[6]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[7]  Kim-Chuan Toh,et al.  Image Restoration with Mixed or Unknown Noises , 2014, Multiscale Model. Simul..

[8]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[9]  Ron Kimmel,et al.  Numerical Geometry of Images , 2003, Springer New York.

[10]  Allen R. Hanson,et al.  Computer Vision Systems , 1978 .

[11]  Jan-Michael Frahm,et al.  Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps , 2008, VMV.

[12]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[13]  K. Deimling Nonlinear functional analysis , 1985 .

[14]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[15]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[16]  David R. Bull,et al.  Context-based video coding , 2013, 2013 IEEE International Conference on Image Processing.

[17]  Deepak Khosla,et al.  Segmentation of functional MRI by K-means clustering , 1995 .

[18]  Joyant Shah,et al.  Curve evolution and segmentation functionals: application to color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[19]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[21]  Nita M. Nimbarte,et al.  Multi-level Thresholding Algorithm for Color Image Segmentation , 2010, 2010 Second International Conference on Computer Engineering and Applications.

[22]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[23]  Xuecheng Tai,et al.  Model the Solvent-Excluded Surface of 3D Protein Molecular Structures Using Geometric PDE-Based Level-Set Method , 2009 .

[24]  I. Ekeland,et al.  10. Relaxation of Non-Convex Variational Problems (II) , 1999 .

[25]  M. Ng,et al.  Alternating minimization method for total variation based wavelet shrinkage model , 2010 .

[26]  Xue-Cheng Tai,et al.  Convex Relaxations for a Generalized Chan-Vese Model , 2013, EMMCVPR.

[27]  Daniel Cremers,et al.  On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional , 2007, SSVM.

[28]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[29]  Michael K. Ng,et al.  A Multiphase Image Segmentation Method Based on Fuzzy Region Competition , 2010, SIAM J. Imaging Sci..

[30]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[31]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[32]  Xue-Cheng Tai,et al.  Augmented Lagrangian method for a mean curvature based image denoising model , 2013 .

[33]  Ran Jin,et al.  A Color Image Segmentation Method Based on Improved K-Means Clustering Algorithm , 2013 .

[34]  Din-Chang Tseng,et al.  Circular histogram thresholding for color image segmentation , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[35]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[36]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[37]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[38]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[39]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[40]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[41]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[42]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[43]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[44]  T. Chan,et al.  Four color theorem and convex relaxation for image segmentation with any number of regions , 2013 .

[45]  Raymond H. Chan,et al.  A Two-Stage Image Segmentation Method for Blurry Images with Poisson or Multiplicative Gamma Noise , 2014, SIAM J. Imaging Sci..

[46]  Ron Kimmel,et al.  Numerical geometry of images - theory, algorithms, and applications , 2003 .

[47]  M. Ng,et al.  EFFICIENT BOX-CONSTRAINED TV-TYPE-l^1 ALGORITHMS FOR RESTORING IMAGES WITH IMPULSE NOISE , 2013 .

[48]  Xue-Cheng Tai,et al.  A Continuous Max-Flow Approach to Potts Model , 2010, ECCV.

[49]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[50]  Michael K. Ng,et al.  On the Total Variation Dictionary Model , 2010, IEEE Transactions on Image Processing.

[51]  Julie Delon,et al.  Color Image Segmentation Using Acceptable Histogram Segmentation , 2005, IbPRIA.

[52]  M. Ng,et al.  Kernel density estimation based multiphase fuzzy region competition method for texture image segmentation , 2010 .

[53]  Lei Zhang,et al.  Active contours with selective local or global segmentation: A new formulation and level set method , 2010, Image Vis. Comput..

[54]  Bodo Rosenhahn,et al.  Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Tracking , 2007, International Journal of Computer Vision.

[55]  Stephen P. Boyd,et al.  An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems , 2012, 1203.1828.

[56]  Raymond H. Chan,et al.  A Two-Stage Image Segmentation Method Using a Convex Variant of the Mumford-Shah Model and Thresholding , 2013, SIAM J. Imaging Sci..

[57]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[58]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[59]  Xavier Bresson,et al.  Completely Convex Formulation of the Chan-Vese Image Segmentation Model , 2012, International Journal of Computer Vision.

[60]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[61]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[62]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[63]  T. Ohashi Hill-Climbing Algorithm for Efficient Color-Based Image Segmentation , 2003 .

[64]  Martin S. Kochmanski NOTE ON THE E. ISING'S PAPER ,,BEITRAG ZUR THEORIE DES FERROMAGNETISMUS" (Zs. Physik, 31, 253 (1925)) , 2008 .