A new multi-purpose software package for Schrödinger and Sturm-Liouville computations
暂无分享,去创建一个
[1] L. Ixaru,et al. Choosing step sizes for perturbative methods of solving the Schrödinger equation , 1980 .
[2] Frank de Hoog,et al. Uniform estimation of the eigenvalues of Sturm–Liouville problems , 1980, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[3] N. Fröman,et al. Phase‐integral calculation of quantal matrix elements without the use of wavefunctions , 1977 .
[4] Steven Pruess,et al. Estimating the Eigenvalues of Sturm–Liouville Problems by Approximating the Differential Equation , 1973 .
[5] N. Fröman,et al. A direct method for modifying certain phase-integral approximations of arbitrary order , 1974 .
[6] Roy G. Gordon,et al. New Method for Constructing Wavefunctions for Bound States and Scattering , 1969 .
[7] R. L. Roy,et al. Bound → continuum intensities — A computer program for calculating absorption coefficients, emission intensities or (golden rule) predissociation rates , 1989 .
[8] John D. Pryce,et al. Error Control of Phase-Function Shooting Methods for Sturm-Liouville Problems , 1986 .
[9] C. Jedrzejek,et al. Phase-integral and numerical calculations of matrix elements and Franck-Condon factors for Morse oscillators , 1987 .
[10] N. Fröman,et al. On modifications of phase integral approximations of arbitrary order , 1974 .
[11] N. Fröman. Connection formulas for certain higher order phase-integral approximations , 1970 .
[12] N. Fröman. A simple formula for calculating quantal expectation values without the use of wave functions , 1974 .
[13] L. Ixaru. The error analysis of the algebraic method for solving the Schrödinger equation , 1972 .
[14] J. Tienari,et al. Efficient computation of the Pru¨fer phase function for determining eigenvalues of Sturm-Liouville systems , 1986 .