MOMCMC: An efficient Monte Carlo method for multi-objective sampling over real parameter space
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] E. Loh. Multigrid Monte Carlo methods , 1988 .
[3] Goodman,et al. Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.
[4] Qingfu Zhang,et al. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.
[5] Elizabeth L. Wilmer,et al. Markov Chains and Mixing Times , 2008 .
[6] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[7] Yaohang Li,et al. DEMCMC-GPU: An Efficient Multi-Objective Optimization Method with GPU Acceleration on the Fermi Architecture , 2011, New Generation Computing.
[8] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[9] Josef Dobes,et al. Multiobjective optimization with an asymptotically uniform coverage of Pareto front , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
[10] Kalyanmoy Deb,et al. Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.
[11] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[12] Yaohang Li,et al. Sampling Multiple Scoring Functions Can Improve Protein Loop Structure Prediction Accuracy , 2011, J. Chem. Inf. Model..
[13] S. Sorooshian,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .
[14] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[15] M. Koppen,et al. A fuzzy scheme for the ranking of multivariate data and its application , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..
[16] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[17] Patrick M. Reed,et al. Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.
[18] Daan Frenkel,et al. Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .
[19] Cajo J. F. ter Braak,et al. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..
[20] Patrick M. Reed,et al. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .
[21] Bernd A. Berg. Markov Chain Monte Carlo Simulations and Their Statistical Analysis , 2004 .
[22] Jasper A Vrugt,et al. Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.
[23] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[24] Bernd A. Berg,et al. Markov Chain Monte Carlo Simulations , 2007, Wiley Encyclopedia of Computer Science and Engineering.
[25] Jens H. Krüger,et al. A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.
[26] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[27] Anne Auger,et al. Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..
[28] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .
[29] C. Geyer,et al. Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .
[30] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[31] Yaohang Li,et al. Integrating multiple scoring functions to improve protein loop structure conformation space sampling , 2010, 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.
[32] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[33] David Corne,et al. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[35] Dimitris K. Agrafiotis,et al. Multiobjective optimization of combinatorial libraries , 2002, J. Comput. Aided Mol. Des..
[36] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[37] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.