MOMCMC: An efficient Monte Carlo method for multi-objective sampling over real parameter space

In this paper, we present a new population-based Monte Carlo method, so-called MOMCMC (Multi-Objective Markov Chain Monte Carlo), for sampling in the presence of multiple objective functions in real parameter space. The MOMCMC method is designed to address the ''multi-objective sampling'' problem, which is not only of interest in exploring diversified solutions at the Pareto optimal front in the function space of multiple objective functions, but also those near the front. MOMCMC integrates Differential Evolution (DE) style crossover into Markov Chain Monte Carlo (MCMC) to adaptively propose new solutions from the current population. The significance of dominance is taken into consideration in MOMCMC's fitness assignment scheme while balancing the solution's optimality and diversity. Moreover, the acceptance rate in MOMCMC is used to control the sampling bandwidth of the solutions near the Pareto optimal front. As a result, the computational results of MOMCMC with the high-dimensional ZDT benchmark functions demonstrate its efficiency in obtaining solution samples at or near the Pareto optimal front. Compared to MOSCEM (Multiobjective Shuffled Complex Evolution Metropolis), an existing Monte Carlo sampling method for multi-objective optimization, MOMCMC exhibits significantly faster convergence to the Pareto optimal front. Furthermore, with small population size, MOMCMC also shows effectiveness in sampling complicated multi-objective function space.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  E. Loh Multigrid Monte Carlo methods , 1988 .

[3]  Goodman,et al.  Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.

[4]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[5]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  Yaohang Li,et al.  DEMCMC-GPU: An Efficient Multi-Objective Optimization Method with GPU Acceleration on the Fermi Architecture , 2011, New Generation Computing.

[8]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[9]  Josef Dobes,et al.  Multiobjective optimization with an asymptotically uniform coverage of Pareto front , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[10]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[11]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[12]  Yaohang Li,et al.  Sampling Multiple Scoring Functions Can Improve Protein Loop Structure Prediction Accuracy , 2011, J. Chem. Inf. Model..

[13]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  M. Koppen,et al.  A fuzzy scheme for the ranking of multivariate data and its application , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[18]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[19]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[20]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[21]  Bernd A. Berg Markov Chain Monte Carlo Simulations and Their Statistical Analysis , 2004 .

[22]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[23]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[24]  Bernd A. Berg,et al.  Markov Chain Monte Carlo Simulations , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[25]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[26]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[27]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[28]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[29]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[30]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[31]  Yaohang Li,et al.  Integrating multiple scoring functions to improve protein loop structure conformation space sampling , 2010, 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[32]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[33]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[35]  Dimitris K. Agrafiotis,et al.  Multiobjective optimization of combinatorial libraries , 2002, J. Comput. Aided Mol. Des..

[36]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[37]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.