Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations.

A multiscale method is presented to bridge between the atomistic and mesoscopic membrane systems. The atomistic model in this case is the united atom dimyristoylphosphatidylcholine membrane system, although the method is completely general. Atomistic molecular dynamics provides the expansion modulus which is used to parametrize a mesoscopic elastic membrane model. The resulting elastic membrane model, including explicit mesoscopic solvent, shows appropriate static and dynamic undulation behaviors. Large membranes of approximately 100 nm in length can then be easily simulated using the mesoscopic membrane system. The critical feedback from the mesoscopic system back down to the atomistic-scale system is accomplished by bridging the stress (or surface tension) of a small region in the mesoscopic membrane to the corresponding atomistic membrane system. Because of long length-scale modes of membranes such as undulation and buckling, the local tension responds differently from the frame tension, when subjected to external perturbations. The effect of these membrane modes is shown for the stress response of a local membrane region and therefore the atomistic membrane system. In addition, certain equilibrium static and dynamic properties of stand-alone and multiscale coupled systems are presented for several different membrane sizes. Although static properties such as two-dimensional pair-correlation function and order parameters show no noticeable discrepancy for the different systems, lipid self-diffusion and the rotational relaxation of lipid dipoles have a strong dependence on the membrane size (or long-wavelength membrane motions), which is properly modeled by the present multiscale method.

[1]  Alan E. Mark,et al.  Effect of Undulations on Surface Tension in Simulated Bilayers , 2001 .

[2]  Gregory A. Voth,et al.  Interfacing continuum and molecular dynamics: An application to lipid bilayers , 2001 .

[3]  A Ajdari,et al.  Effective-area elasticity and tension of micromanipulated membranes. , 2001, Physical review letters.

[4]  O. Hamill,et al.  Molecular basis of mechanotransduction in living cells. , 2001, Physiological reviews.

[5]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[6]  Bernard R. Brooks,et al.  Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water , 1995 .

[7]  Eduardo Perozo,et al.  Structure and mechanism in prokaryotic mechanosensitive channels. , 2003, Current opinion in structural biology.

[8]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[9]  G. Voth,et al.  A new perspective on the coarse-grained dynamics of fluids. , 2004, The Journal of chemical physics.

[10]  John C. Shelley,et al.  Computer simulation of surfactant solutions , 2000 .

[11]  L. Kramer Theory of Light Scattering from Fluctuations of Membranes and Monolayers , 1971 .

[12]  H. Rafii-Tabar,et al.  Multi-scale computational modelling of solidification phenomena , 2002 .

[13]  J Feder,et al.  Coupling particles and fields in a diffusive hybrid model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  S. A. Shkulipa,et al.  Buckling and persistence length of an amphiphilic worm from molecular dynamics simulations , 2003 .

[15]  V. Bulatov,et al.  Connecting atomistic and mesoscale simulations of crystal plasticity , 1998, Nature.

[16]  M. Stevens,et al.  Coarse-grained simulations of lipid bilayers. , 2004, The Journal of chemical physics.

[17]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[18]  Alexander M. Smondyrev,et al.  United atom force field for phospholipid membranes: Constant pressure molecular dynamics simulation of dipalmitoylphosphatidicholine/water system , 1999 .

[19]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[20]  M. Plischke,et al.  Molecular dynamics of tethered membranes. , 1989, Physical review letters.

[21]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[23]  Joseph H. Simmons,et al.  A Concurrent multiscale finite difference time domain/molecular dynamics method for bridging an elastic continuum to an atomic system , 2003 .

[24]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[25]  Evan Evans,et al.  Dynamic tension spectroscopy and strength of biomembranes. , 2003, Biophysical journal.

[26]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[27]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[28]  J. Henriksen,et al.  Measurement of membrane elasticity by micro-pipette aspiration , 2004, The European physical journal. E, Soft matter.

[29]  E. Sackmann,et al.  Membrane bending energy concept of vesicle‐ and cell‐shapes and shape‐transitions , 1994, FEBS letters.

[30]  Gregory A Voth,et al.  Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers. , 2004, Biophysical journal.

[31]  Nicolas G. Hadjicostantinou COMBINING ATOMISTIC AND CONTINUUM SIMULATIONS OF CONTACT-LINE MOTION , 1999 .

[32]  P. Coveney,et al.  Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  H. L. Scott,et al.  Modeling the lipid component of membranes. , 2002, Current opinion in structural biology.

[34]  Fisher,et al.  Thermodynamic behavior of two-dimensional vesicles. , 1987, Physical review letters.

[35]  L. Lin,et al.  Dynamics of pinned membranes with application to protein diffusion on the surface of red blood cells. , 2004, Biophysical journal.

[36]  E. Sackmann,et al.  Collective membrane motions of high and low amplitude, studied by dynamic light scattering and micro-interferometry. , 1998, Faraday discussions.

[37]  Reinhard Lipowsky,et al.  Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations , 2002 .

[38]  M. Klein,et al.  Computer simulation studies of biomembranes using a coarse grain model , 2002 .

[39]  J. Henderson,et al.  Statistical mechanics of inhomogeneous fluids , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  G. Voth,et al.  Calculating the bulk modulus for a lipid bilayer with nonequilibrium molecular dynamics simulation. , 2002, Biophysical journal.

[41]  S. Safran Statistical thermodynamics of soft surfaces , 2002 .

[42]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[43]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[44]  Evan Evans,et al.  Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions , 1987 .

[45]  Leonor Saiz,et al.  Computer simulation studies of model biological membranes. , 2002, Accounts of chemical research.

[46]  E. Lindahl,et al.  Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations , 2000 .

[47]  S. Leibler,et al.  Vanishing tension of fluctuating membranes , 1991 .

[48]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[49]  Nelson,et al.  Tethered surfaces: Statics and dynamics. , 1987, Physical review. A, General physics.

[50]  Siewert J Marrink,et al.  Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. , 2004, Journal of the American Chemical Society.

[51]  F. Brochard,et al.  Frequency spectrum of the flicker phenomenon in erythrocytes , 1975 .

[52]  Alan E Mark,et al.  Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. , 2003, Journal of the American Chemical Society.

[53]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[54]  Samuel A. Safran,et al.  Curvature elasticity of thin films , 1999 .

[55]  Michael L. Klein,et al.  Simulations of Phospholipids Using a Coarse Grain Model , 2001 .

[56]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[57]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[59]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[60]  Gregory A Voth,et al.  Bridging microscopic and mesoscopic simulations of lipid bilayers. , 2002, Biophysical journal.

[61]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[62]  Gregory A Voth,et al.  Interfacing molecular dynamics and macro-scale simulations for lipid bilayer vesicles. , 2002, Biophysical journal.

[63]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[64]  R. Benz,et al.  Collective membrane motions in the mesoscopic range and their modulation by the binding of a monomolecular protein layer of streptavidin studied by dynamic light scattering. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  Marcus Müller,et al.  Coarse‐grained models and collective phenomena in membranes: Computer simulation of membrane fusion , 2003 .

[66]  F. Brown Regulation of protein mobility via thermal membrane undulations. , 2003, Biophysical journal.

[67]  Watt W. Webb,et al.  Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles , 1984 .

[68]  O. Farago “Water-free” computer model for fluid bilayer membranes , 2003, cond-mat/0304203.

[69]  Grace Brannigan,et al.  Solvent-free simulations of fluid membrane bilayers. , 2004, The Journal of chemical physics.

[70]  E. Evans,et al.  Elasticity of ``Fuzzy'' Biomembranes , 1997 .