Parametric and Non-Parametric Identification of a Two Dimensional Flexible Structure

An investigation into the parametric and non-parametric modelling of a two dimensional flexible plate structure is presented in this paper. The parametric approaches obtaining linear parametric models of the system using recursive least squares and genetic algorithms. The non-parametric models of the system are developed using a non-linear AutoRegressive process with eXogeneous input model with multi-layered perceptron neural networks, Elman recurrent neural networks and adaptive neuro-fuzzy inference systems. The models are validated using several validation tests including input-output mapping, mean squares of error and correlation tests. A comparative assessment of the techniques used is presented and discussed in terms of accuracy, efficiency and performance in estimating the modes of vibration of the system.

[1]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[2]  Godfrey A. Walters,et al.  Application of genetic algorithms to pump scheduling for water supply , 1995 .

[3]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .

[4]  J. Schoukens,et al.  On the use of system identification for accurate parametric modelling of non-linear systems using noisy measurements , 1995, Proceedings of 1995 IEEE Instrumentation and Measurement Technology Conference - IMTC '95.

[5]  山川 烈,et al.  Soft Computing , 2000, Soft Comput..

[6]  A. J. Katz,et al.  Generating Image Filters for Target Recognition by Genetic Learning , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  R. Dawkins The Blind Watchmaker , 1986 .

[8]  Peter J. Fleming,et al.  Parallel Genetic Algorithms: A Survey , 1994 .

[9]  P. S. Sastry,et al.  Memory neuron networks for identification and control of dynamical systems , 1994, IEEE Trans. Neural Networks.

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Marzuki Khalid,et al.  Neuro-Control Applications , 1996 .

[12]  John E. Markel,et al.  Linear Prediction of Speech , 1976, Communication and Cybernetics.

[13]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[14]  Philip R. Thrift,et al.  Generating image filters for target recognition by neural network learning , 1993 .

[15]  P. Wang,et al.  Optimal Design of PID Process Controllers based on Genetic Algorithms , 1993 .

[16]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[17]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[18]  M. O. Tokhi,et al.  Active Sound and Vibration Control: Theory and Applications [Book Review] , 2004, IEEE Control Systems.

[19]  Derek A. Linkens,et al.  Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications , 1996 .

[20]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[21]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[22]  S. Billings,et al.  Correlation based model validity tests for non-linear models , 1986 .

[23]  Xiao Jun Application of Genetic Algorithms , 2005 .

[24]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[25]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  Martin D. Levine,et al.  Geometric Primitive Extraction Using a Genetic Algorithm , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  M. Bellanger Adaptive filter theory: by Simon Haykin, McMaster University, Hamilton, Ontario L8S 4LB, Canada, in: Prentice-Hall Information and System Sciences Series, published by Prentice-Hall, Englewood Cliffs, NJ 07632, U.S.A., 1986, xvii+590 pp., ISBN 0-13-004052-5 025 , 1987 .

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[30]  Fa-Long Luo,et al.  Applied neural networks for signal processing , 1997 .

[31]  Tiam Lin Sze System identification using radial basis function networks , 1995 .

[32]  Okyay Kaynak,et al.  A comparative study of soft-computing methodologies in identification of robotic manipulators , 2000, Robotics Auton. Syst..