Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making

[1]  S. Greco,et al.  Extreme ranking analysis in robust ordinal regression , 2012 .

[2]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..

[3]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[4]  Salvatore Greco,et al.  Robust ordinal regression for multiple criteria group decision: UTA GMS -GROUP and , 2012 .

[5]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..

[6]  Milosz Kadzinski,et al.  ELECTREGKMS: Robust ordinal regression for outranking methods , 2011, Eur. J. Oper. Res..

[7]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[8]  Salvatore Greco,et al.  Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..

[9]  Philippe Fortemps,et al.  ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements , 2010, Eur. J. Oper. Res..

[10]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[11]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[12]  Salvatore Greco,et al.  The Possible and the Necessary for Multiple Criteria Group Decision , 2009, ADT.

[13]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[14]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[15]  Luis C. Dias,et al.  Dealing with inconsistent judgments in multiple criteria sorting models , 2006, 4OR.

[16]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[17]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[18]  Nikolaos F. Matsatsinis,et al.  MCDA and preference disaggregation in group decision support systems , 2001, Eur. J. Oper. Res..

[19]  Michel Beuthe,et al.  Comparative analysis of UTA multicriteria methods , 2001, Eur. J. Oper. Res..

[20]  Salvatore Greco,et al.  Rough approximation of a preference relation by dominance relations , 1999, Eur. J. Oper. Res..

[21]  Vincent Mousseau,et al.  Inferring an ELECTRE TRI Model from Assignment Examples , 1998, J. Glob. Optim..

[22]  M. Shakun,et al.  Mediator: Towards a Negotiation Support System , 1985 .

[23]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[24]  M. Shakun,et al.  Decision support systems for semi-structured buying decisions , 1984 .

[25]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .