Adaptive Cross Approximation of Multivariate Functions

In this article we present and analyze a new scheme for the approximation of multivariate functions (d=3,4) by sums of products of univariate functions. The method is based on the Adaptive Cross Approximation (ACA) initially designed for the approximation of bivariate functions. To demonstrate the linear complexity of the schemes, we apply it to large-scale multidimensional arrays generated by the evaluation of functions.

[1]  M. A. Babaev,et al.  Best approximation by bilinear forms , 1989 .

[2]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[3]  Ilghiz Ibraghimov,et al.  Application of the three‐way decomposition for matrix compression , 2002, Numer. Linear Algebra Appl..

[4]  Sören Bartels,et al.  Error Controlled Local Resolution of Evolving Interfaces for Generalized Cahn-Hilliard Equations , 2009 .

[5]  J. Leeuw,et al.  Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms , 1987 .

[6]  Felix Otto,et al.  Universal Bounds for the Littlewood-Paley First-Order Moments of the 3D Navier-Stokes Equations , 2010 .

[7]  M. Griebel,et al.  Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions , 2009 .

[8]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[9]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[10]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[11]  Matthias Kurzke,et al.  Quantitative Equipartition of the Ginzburg-Landau Energy with Applications , 2010 .

[12]  Sören Bartels,et al.  Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces , 2009, Math. Comput..

[13]  Dietrich Braess,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .

[14]  Maria Specovius-Neugebauer,et al.  Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviour , 2009 .

[15]  Boris N. Khoromskij,et al.  Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..

[16]  Ricardo H. Nochetto,et al.  A FINITE ELEMENT SCHEME FOR THE EVOLUTION OF ORIENTATIONAL ORDER IN FLUID MEMBRANES , 2010 .

[17]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[18]  Sören Bartels,et al.  Robust A Priori and A Posteriori Error Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations Past Topological Changes , 2011, SIAM J. Numer. Anal..

[19]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[20]  Jens Frehse,et al.  REGULARITY RESULTS FOR THREE-DIMENSIONAL ISOTROPIC AND KINEMATIC HARDENING INCLUDING BOUNDARY DIFFERENTIABILITY , 2009 .

[21]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[22]  Sören Bartels,et al.  Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities , 2011, Math. Comput..

[23]  Dietrich Braess,et al.  On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .

[24]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[25]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[26]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[27]  S. M'el'eard,et al.  Uniform Estimates for Metastable Transition Times in a Coupled Bistable System , 2009, 0907.0537.

[28]  Matthias Kurzke,et al.  Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation , 2011 .

[29]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[30]  N. Kistler,et al.  Small Perturbations of a Spin Glass System , 2009, 0902.0294.

[31]  Wolfgang Alt,et al.  Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics , 2009, Bulletin of mathematical biology.

[32]  M. Bebendorf,et al.  Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation , 2006 .

[33]  B. Khoromskij Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .

[34]  Jaromír Šimša,et al.  The bestL2-approximation by finite sums of functions with separable variables , 1992 .

[35]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[36]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[37]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[38]  F. Otto,et al.  An optimal variance estimate in stochastic homogenization of discrete elliptic equations , 2011, 1104.1291.

[39]  Themistocles M. Rassias,et al.  Finite Sums Decompositions In Mathematical Analysis , 1995 .

[40]  J. Frehse,et al.  On boundary regularity for the stress in problems of linearized elasto-plasticity , 2009 .

[41]  Tamara G. Kolda,et al.  A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition , 2002, SIAM J. Matrix Anal. Appl..

[42]  S. Albeverio,et al.  LOCAL DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS , 2011 .

[43]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[44]  Boris N. Khoromskij,et al.  Verification of the cross 3D algorithm on quantum chemistry data , 2008 .

[45]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[46]  Jan Schneider-Barnes,et al.  Error estimates for two-dimensional cross approximation , 2010, J. Approx. Theory.

[47]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .