Adaptive Cross Approximation of Multivariate Functions
暂无分享,去创建一个
[1] M. A. Babaev,et al. Best approximation by bilinear forms , 1989 .
[2] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[3] Ilghiz Ibraghimov,et al. Application of the three‐way decomposition for matrix compression , 2002, Numer. Linear Algebra Appl..
[4] Sören Bartels,et al. Error Controlled Local Resolution of Evolving Interfaces for Generalized Cahn-Hilliard Equations , 2009 .
[5] J. Leeuw,et al. Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms , 1987 .
[6] Felix Otto,et al. Universal Bounds for the Littlewood-Paley First-Order Moments of the 3D Navier-Stokes Equations , 2010 .
[7] M. Griebel,et al. Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions , 2009 .
[8] Sergej Rjasanow,et al. Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.
[9] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[10] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[11] Matthias Kurzke,et al. Quantitative Equipartition of the Ginzburg-Landau Energy with Applications , 2010 .
[12] Sören Bartels,et al. Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces , 2009, Math. Comput..
[13] Dietrich Braess,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .
[14] Maria Specovius-Neugebauer,et al. Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviour , 2009 .
[15] Boris N. Khoromskij,et al. Multigrid Accelerated Tensor Approximation of Function Related Multidimensional Arrays , 2009, SIAM J. Sci. Comput..
[16] Ricardo H. Nochetto,et al. A FINITE ELEMENT SCHEME FOR THE EVOLUTION OF ORIENTATIONAL ORDER IN FLUID MEMBRANES , 2010 .
[17] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[18] Sören Bartels,et al. Robust A Priori and A Posteriori Error Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations Past Topological Changes , 2011, SIAM J. Numer. Anal..
[19] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[20] Jens Frehse,et al. REGULARITY RESULTS FOR THREE-DIMENSIONAL ISOTROPIC AND KINEMATIC HARDENING INCLUDING BOUNDARY DIFFERENTIABILITY , 2009 .
[21] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[22] Sören Bartels,et al. Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities , 2011, Math. Comput..
[23] Dietrich Braess,et al. On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .
[24] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[25] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[26] Mario Bebendorf,et al. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .
[27] S. M'el'eard,et al. Uniform Estimates for Metastable Transition Times in a Coupled Bistable System , 2009, 0907.0537.
[28] Matthias Kurzke,et al. Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation , 2011 .
[29] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[30] N. Kistler,et al. Small Perturbations of a Spin Glass System , 2009, 0902.0294.
[31] Wolfgang Alt,et al. Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics , 2009, Bulletin of mathematical biology.
[32] M. Bebendorf,et al. Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation , 2006 .
[33] B. Khoromskij. Structured Rank-(r1, . . . , rd) Decomposition of Function-related Tensors in R_D , 2006 .
[34] Jaromír Šimša,et al. The bestL2-approximation by finite sums of functions with separable variables , 1992 .
[35] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[36] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[37] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[38] F. Otto,et al. An optimal variance estimate in stochastic homogenization of discrete elliptic equations , 2011, 1104.1291.
[39] Themistocles M. Rassias,et al. Finite Sums Decompositions In Mathematical Analysis , 1995 .
[40] J. Frehse,et al. On boundary regularity for the stress in problems of linearized elasto-plasticity , 2009 .
[41] Tamara G. Kolda,et al. A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition , 2002, SIAM J. Matrix Anal. Appl..
[42] S. Albeverio,et al. LOCAL DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS , 2011 .
[43] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[44] Boris N. Khoromskij,et al. Verification of the cross 3D algorithm on quantum chemistry data , 2008 .
[45] G. Beylkin,et al. On approximation of functions by exponential sums , 2005 .
[46] Jan Schneider-Barnes,et al. Error estimates for two-dimensional cross approximation , 2010, J. Approx. Theory.
[47] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .