PT-Symmetric Potentials from the Confluent Heun Equation

We derive exactly solvable potentials from the formal solutions of the confluent Heun equation and determine conditions under which the potentials possess PT symmetry. We point out that for the implementation of PT symmetry, the symmetrical canonical form of the Heun equation is more suitable than its non-symmetrical canonical form. The potentials identified in this construction depend on twelve parameters, of which three contribute to scaling and shifting the energy and the coordinate. Five parameters control the z(x) function that detemines the variable transformation taking the Heun equation into the one-dimensional Schrödinger equation, while four parameters play the role of the coupling coefficients of four independently tunable potential terms. The potentials obtained this way contain Natanzon-class potentials as special cases. Comparison with the results of an earlier study based on potentials obtained from the non-symmetrical canonical form of the confluent Heun equation is also presented. While the explicit general solutions of the confluent Heun equation are not available, the results are instructive in identifying which potentials can be obtained from this equation and under which conditions they exhibit PT symmetry, either unbroken or broken.

[1]  P. Roy,et al.  An exactly solvable PT symmetric potential from the Natanzon class , 2003, quant-ph/0306030.

[2]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[3]  A singular Lambert-W Schrödinger potential exactly solvable in terms of the confluent hypergeometric functions , 2016, 1606.06383.

[4]  E. Sudarshan,et al.  A class of solvable potentials , 1962 .

[5]  Herman Feshbach Unified theory of nuclear reactions , 1958 .

[6]  G. Lévai symmetry and its spontaneous breakdown in three dimensions , 2008 .

[7]  E. Magyari,et al.  The -symmetric Rosen–Morse II potential: effects of the asymptotically non-vanishing imaginary potential component , 2009 .

[8]  A. Ventura,et al.  PT-symmetric potentials and the so(2,2) algebra , 2002 .

[9]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.

[10]  Space of State Vectors in PT Symmetrical Quantum Mechanics , 2001, quant-ph/0104077.

[11]  PT-SYMMETRIC SQUARE WELL AND THE ASSOCIATED SUSY HIERARCHIES , 2002, quant-ph/0205003.

[12]  M. Znojil,et al.  Systematic search for -symmetric potentials with real energy spectra , 2000 .

[13]  B. W. Williams,et al.  “Implicit” potentials associated with Jacobi polynomials: some novel aspects , 1995 .

[14]  G. Natanzon General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions , 1979 .

[15]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[16]  B. W. Williams,et al.  An Asymmetric "Implicit" Potential on the Real Line , 2003 .

[17]  Anomalous doublets of states in a /PT symmetric quantum model , 2001, quant-ph/0104059.

[18]  A. Ventura,et al.  Algebraic and scattering aspects of a -symmetric solvable potential , 2001 .

[19]  G. Lévai Gradual spontaneous breakdown of symmetry in a solvable potential , 2012 .

[20]  M. Znojil,et al.  The interplay of supersymmetry and PT symmetry in quantum mechanics: A case study for the Scarf II potential , 2002, quant-ph/0206013.

[21]  Z. Ahmed Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex -invariant potential , 2001 .

[22]  A. Lemieux,et al.  Construction de potentiels pour lesquels l'équation de Schrödinger est soluble , 1969 .

[23]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[24]  J. Ginocchio A class of exactly solvable potentials II. The three-dimensional Schrödinger equation , 1985 .

[25]  Comprehensive analysis of conditionally exactly solvable models , 2001, math-ph/0102017.

[26]  A. M. Ishkhanyan A conditionally exactly solvable generalization of the inverse square root potential , 2016 .

[27]  B. Bagchi,et al.  Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework , 2002, math-ph/0205002.

[28]  A. Ronveaux,et al.  Heun's differential equations , 1995 .

[29]  G. Lévai On the pseudo-norm and admissible solutions of the -symmetric Scarf I potential , 2006 .

[30]  G. Lévai A search for shape-invariant solvable potentials , 1989 .

[31]  A conditionally exactly solvable generalization of the potential step , 2015, 1512.04196.

[32]  Ali Mostafazadeha Pseudo-Hermiticity versus PT symmetry : The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001 .

[33]  G. Lévai Solvable PT -symmetric potentials in 2 and 3 dimensions , 2008 .

[34]  Fabio Bagarello,et al.  Non-selfadjoint operators in quantum physics : mathematical aspects , 2015 .

[35]  G. Lévai A class of exactly solvable potentials related to the Jacobi polynomials , 1991 .

[36]  G. Japaridze Space of state vectors in -symmetric quantum mechanics , 2001 .

[37]  P. Cordero,et al.  Algebraic solution for the Natanzon confluent potentials , 1991 .

[38]  J. Ginocchio A class of exactly solvable potentials. I. One-dimensional Schrödinger equation☆ , 1984 .

[39]  Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[40]  A. Ishkhanyan Schrödinger potentials solvable in terms of the confluent Heun functions , 2016 .

[41]  A. Khare,et al.  New class of conditionally exactly solvable potentials in quantum mechanics , 1995 .

[42]  G. Lévai On the normalization constant of PT-symmetric and real Rosen–Morse I potentials , 2008 .

[43]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[44]  G. Lévai PT${\mathcal {PT}}$ Symmetry in Natanzon-class Potentials , 2015 .

[45]  A. López-Ortega New conditionally exactly solvable inverse power law potentials , 2015, 1512.01928.

[46]  A. Erdélyi Certain expansions of solutions of the Heun equation , 1944 .

[47]  A. Ishkhanyan The third exactly solvable hypergeometric quantum-mechanical potential , 2016, 1602.07685.

[48]  M. Znojil,et al.  Conditions for complex spectra in a class of PT symmetric potentials , 2001, quant-ph/0110064.

[49]  Z. Ahmed Zero width resonance (spectral singularity) in a complex PT-symmetric potential , 2009, 0908.2876.

[50]  L. Gendenshtein Derivation of Exact Spectra of the Schrodinger Equation by Means of Supersymmetry , 1984 .

[51]  G. Lévai Solvable -symmetric potentials in higher dimensions , 2007 .

[52]  P. Mannheim Astrophysical evidence for the non‐Hermitian but PT‐symmetric Hamiltonian of conformal gravity , 2012, 1205.5717.

[53]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[54]  L. El-Jaick,et al.  A limit of the confluent Heun equation and the Schrödinger equation for an inverted potential and for an electric dipole , 2009, 0902.3202.

[55]  Exact solution of the Schr\"odinger equation for the inverse square root potential $V_0/{\sqrt{x}}$ , 2015, 1509.00019.

[56]  D. Schmidt Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen. , 1979 .

[57]  T. Ohlsson Non-Hermitian neutrino oscillations in matter with PT symmetric Hamiltonians , 2015, 1509.06452.

[58]  A. Ventura,et al.  PT symmetry breaking and explicit expressions for the pseudo-norm in the Scarf II potential , 2002, quant-ph/0206032.