Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization

In this paper, two lbests multi-objective particle swarm optimization (2LB-MOPSO) is applied to design multi-objective robust Proportional-integral-derivative (PID) controllers for two MIMO systems, namely, distillation column plant and longitudinal control system of the super maneuverable F18/HARV fighter aircraft. Multi-objective robust PID controller design problem is formulated by minimizing integral squared error (ISE) and balanced robust performance criteria. During the search, 2LB-MOPSO can focus on small regions in the parameter space in the vicinity of the best existing fronts. As the lbests are chosen from the top fronts in a non-domination sorted external archive of reasonably large size, the offspring obtained can be more diverse with good fitness. The performance of various optimal PID controllers is compared in terms of the sum of ISE and balanced robust performance criteria. For the purpose of comparison, 2LB-MOPSO, NSGA-II as well as earlier reported Riccati, IGA and OSA methods are considered. The performance of PID controllers obtained using 2LB-MOPSO is better than that of others. In addition, Hypervolume-based comparisons are carried out to show the superior performance of 2LB-MOPSO over NSGA-II. The results reveal that 2LB-MOPSO yields better robustness and consistency in terms of the sum of ISE and balanced robust performance criteria than various optimal PID controllers.

[1]  Michel Verhaegen,et al.  Robust output-feedback controller design via local BMI optimization , 2004, Autom..

[2]  L. Coelho,et al.  PID control design for chaotic synchronization using a tribes optimization approach , 2009 .

[3]  Bor-Sen Chen,et al.  A genetic approach to mixed H/sub 2//H/sub /spl infin// optimal PID control , 1995 .

[4]  Chun-Liang Lin,et al.  Multiobjective PID control for a linear brushless DC motor: An evolutionary approach , 2002 .

[5]  José Boaventura Cunha,et al.  Multi-Objective Particle Swarm Optimization Design of PID Controllers , 2009, IWANN.

[6]  Ajith Abraham,et al.  Design of fractional order PIλDμ controllers with an improved differential evolution , 2008, GECCO '08.

[7]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[8]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[9]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[10]  Bor-Sen Chen,et al.  A structure-specified H∞ optimal control design for practical applications: a genetic approach , 1998, IEEE Trans. Control. Syst. Technol..

[11]  George F. List,et al.  Multiobjective optimization of a plastic injection molding process , 1994, IEEE Trans. Control. Syst. Technol..

[12]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[13]  Niahn-Chung Shieh,et al.  GA-Based Multiobjective PID Control for a Linear , 2003 .

[14]  Rong-Fong Fung,et al.  The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach , 2006 .

[15]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[16]  Leandro dos Santos Coelho,et al.  Computational intelligence approach to PID controller design using the universal model , 2010, Inf. Sci..

[17]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[18]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  Babatunde A. Ogunnaike,et al.  MODELING AND CONTROL OF A TEMPERATURE-BASED HIGH-PURITY DISTILLATION COLUMN* , 1997 .

[20]  Sunan Wang,et al.  Self-organizing genetic algorithm based tuning of PID controllers , 2009, Inf. Sci..

[21]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[22]  C. AGEES KUMAR,et al.  MULTI-OBJECTIVE PID CONTROLLER BASED ON ADAPTIVE WEIGHTED PSO WITH APPLICATION TO STEAM TEMPERATURE CONTROL IN BOILERS , 2010 .

[23]  Shiow-Fen Hwang,et al.  A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[24]  Shinn-Ying Ho,et al.  Designing structure-specified mixed H/sub 2//H/sub /spl infin// optimal controllers using an intelligent genetic algorithm IGA , 2005, IEEE Transactions on Control Systems Technology.

[25]  W. Chang,et al.  PID controller design of nonlinear systems using an improved particle swarm optimization approach , 2010 .

[26]  Nasser Sadati,et al.  Design of an H∞ PID controller using particle swarm optimization , 2009 .

[27]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[28]  Ponnuthurai Nagaratnam Suganthan,et al.  Two-lbests based multi-objective particle swarm optimizer , 2011 .

[29]  Ioannis Kitsios,et al.  A genetic algorithm for designing H/sub /spl infin// structured specified controllers , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[30]  Peter J. Fleming,et al.  Multiobjective gas turbine engine controller design using genetic algorithms , 1996, IEEE Trans. Ind. Electron..

[31]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[32]  Bor-Sen Chen,et al.  Multiobjective PID control design in uncertain robotic systems using neural network elimination scheme , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[33]  Shinn-Ying Ho,et al.  OSA: orthogonal simulated annealing algorithm and its application to designing mixed H2/H∞ optimal controllers , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[34]  Toshiharu Sugie,et al.  Robust PID controller tuning based on the constrained particle swarm optimization , 2008, Autom..

[35]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[36]  Paulo Ferreira,et al.  Multiobjective H/sub 2//H/sub /spl infin// guaranteed cost PID design , 1997 .

[37]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[38]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[39]  Renato A. Krohling,et al.  Design of optimal disturbance rejection PID controllers using genetic algorithms , 2001, IEEE Trans. Evol. Comput..

[40]  Hassan Bevrani,et al.  Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm , 2007 .

[41]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[42]  M. G. Singh Control System Engineering , 1985 .

[43]  H. Marquez,et al.  Robust Controller Design And Pid Tuning For Multivariable Processes , 2002 .

[44]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[45]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.