A Method for the Integration in Time of Certain Partial Differential Equations

Abstract A method for the numerical solution of ordinary differential equations is analyzed that is explicit and yet can conserve the quadratic quantities conserved by the equations. The method can be a useful alternative to the usual leapfrog technique, in that it does not suffer from the occurrence of blowup phenomena. Numerical examples concerning the Korteweg-de Vries equation and the nonlinear Schrodinger equation are given.

[1]  Osamu Inoue,et al.  Fourier expansion solution of the Korteweg-de Vries equation , 1980 .

[2]  The Mechanism by Which Many Partial Difference Equations Destabilize , 1981 .

[3]  José Canosa,et al.  The Korteweg-de Vries-Burgers equation , 1977 .

[4]  Douglas N. Arnold,et al.  A superconvergent finite element method for the Korteweg-de Vries equation , 1982 .

[5]  J. Sanz-Serna,et al.  Convergence of Methods for the Numerical Solution of the Korteweg—de Vries Equation , 1981 .

[6]  Ionel M. Navon A Numerov-Galerkin Technique Applied to a Finite-Element Shallow-Water Equations Model with Enforced Conservation of Integral Invariants and Selective Lumping , 1983 .

[7]  Walter A. Strauss The Nonlinear Schrödinger Equation , 1978 .

[8]  J. M. Sanz-Serna,et al.  Petrov-Galerkin methods for nonlinear dispersive waves , 1981 .

[9]  Numerical methods for phase-plane problems in ordinary differential equations , 1980 .

[10]  Ragnar Winther,et al.  A conservative finite element method for the Korteweg-de Vries equation , 1980 .

[11]  Jesús María Sanz-Serna,et al.  An explicit finite-difference scheme with exact conservation properties , 1982 .

[12]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[13]  J. M. Sanz-Serna,et al.  Geometrically derived difference formulae for the numerical integration of trajectory problems , 1982 .

[14]  Ionel M. Navon Conservation Laws in Fluid Dynamics and the Enforcement of their Preservation in Numerical Discretizations , 1983 .

[15]  Lars B. Wahlbin A Dissipative Galerkin Method for the Numerical Solution of First Order Hyperbolic Equations , 1974 .

[16]  Hua-Mo Wu,et al.  Numerical solution of K.D.V. equation , 1981 .

[17]  David F. Griffiths,et al.  A numerical study of the nonlinear Schrödinger equation , 1984 .

[18]  A. Newell Finite Amplitude Instabilities of Partial Difference Equations , 1977 .

[19]  Ionel Michael Navon,et al.  Implementation of A Posteriori Methods for Enforcing Conservation of Potential Enstrophy and Mass in Discretized Shallow-Water Equations Models , 1981 .

[20]  R. Wait,et al.  The finite element method in partial differential equations , 1977 .

[21]  Bengt Fornberg,et al.  On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation , 1973 .

[22]  A. R. Mitchell,et al.  Product Approximation for Non-linear Problems in the Finite Element Method , 1981 .

[23]  A. C. Vliegenthart,et al.  On finite-difference methods for the Korteweg-de Vries equation , 1971 .

[24]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[25]  S. W. Schoombie Spline Petrov—Galerkin Methods for the Numerical Solution of the Korteweg—de Vries Equation , 1982 .

[26]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[27]  J. Gazdag Numerical convective schemes based on accurate computation of space derivatives , 1973 .

[28]  Brian Shaw,et al.  On the numcerical solution of ^{’}=(,) by a class of formulae based on rational approximation , 1965 .

[29]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[30]  J. Ll. Morris,et al.  A Hopscotch method for the Korteweg-de-Vries equation , 1976 .

[31]  J. D. Lambert Two Unconventional Classes of Methods for Stiff Systems , 1974 .

[32]  J. A. White,et al.  On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems , 1979 .

[33]  M. E. Alexander,et al.  Galerkin methods applied to some model equations for non-linear dispersive waves , 1979 .