Three-dimensional Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

Numerical simulations of weakly and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new general relativistic magnetohydrodynamic numerical code RAISHIN used in its relativistic magnetohydrodynamic (RMHD) configuration. In the numerical simulations, the Lorentz factor γ = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations, sound speeds are ≲c/ in the weakly magnetized simulations and ≲0.3c in the strongly magnetized simulations. The Alfvén wave speed is ≲0.07c in the weakly magnetized simulations and ≲0.56c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized RMHD equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfvén wave speeds near light speed, and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.

[1]  T. Aldcroft,et al.  The 300 kpc Long X-Ray Jet in PKS 1127–145, z = 1.18 Quasar: Constraining X-Ray Emission Models , 2006, astro-ph/0611406.

[2]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[3]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[4]  D. Lazzati,et al.  Universal GRB Jets from Jet-Cocoon Interaction in Massive Stars , 2005, astro-ph/0502084.

[5]  G. Ghisellini,et al.  Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties , 2004, astro-ph/0406093.

[6]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[7]  G. Fishman,et al.  A General Relativistic Magnetohydrodynamic Simulation of Jet Formation , 2004, astro-ph/0403032.

[8]  R. Walker,et al.  Modeling the 3C 120 Radio Jet from 1 to 30 Milliarcseconds , 2004, astro-ph/0410720.

[9]  P. Hardee The Stability Properties of Astrophysical Jets , 2004 .

[10]  J. Martí,et al.  Stability of hydrodynamical relativistic planar jets - II. Long-term nonlinear evolution , 2004, astro-ph/0407574.

[11]  J. Martí,et al.  Stability of hydrodynamical relativistic planar jets. I. Linear evolution and saturation of Kelvin-Helmholtz modes , 2004, astro-ph/0407548.

[12]  MAGNETICALLY DRIVEN ACCRETION IN THE KERR METRIC. III. UNBOUND OUTFLOWS , 2004, astro-ph/0407092.

[13]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[14]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[15]  A. P. Marscher,et al.  Parsec-Scale Properties of Markarian 501 , 2004 .

[16]  S. Woosley,et al.  The Propagation and Eruption of Relativistic Jets from the Stellar Progenitors of Gamma-Ray Bursts , 2003, astro-ph/0308389.

[17]  P. Comte,et al.  How Can Jets Survive MHD Instabilities? , 2004 .

[18]  The theory and simulation of relativistic jet formation: towards a unified model for micro- and macroquasars , 2003, astro-ph/0312048.

[19]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. I. Models and Overall Structure , 2003, astro-ph/0307260.

[20]  W. N. Brandt,et al.  XMM-Newton Reveals the Quasar Outflow in PG 1115+080 , 2003, astro-ph/0306125.

[21]  P. O’Brien,et al.  Evidence of a high-velocity ionized outflow in a second narrow-line quasar PG 0844+349 , 2003, astro-ph/0305571.

[22]  K. L. Page,et al.  A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143 , 2003 .

[23]  N. Vlahakis,et al.  Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions , 2003, astro-ph/0303482.

[24]  Caltech,et al.  Relativistic Jets in Collapsars , 2002, astro-ph/0207436.

[25]  Poynting-flux-dominated Jets in Decreasing Density Atmospheres , 2004, astro-ph/0406405.

[26]  H. Baty,et al.  Interplay between Kelvin-Helmholtz and Current-driven Instabilities in Jets , 2002 .

[27]  Chandra Detects Relativistic Broad Absorption Lines from APM 08279+5255 , 2002, astro-ph/0207196.

[28]  P. Hardee,et al.  The Effect of External Winds on Relativistic Jets , 2002, astro-ph/0209593.

[29]  D. Lazzati,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2002 .

[30]  Jet Stability and the Generation of Superluminal and Stationary Components , 2001, astro-ph/0101188.

[31]  Duccio Macchetto,et al.  The Optical-Near-Infrared Spectrum of the M87 Jet fromHubble Space Telescope Observations , 2000, astro-ph/0012044.

[32]  P. Hardee,et al.  Relativistic Jet Response to Precession and Wave-Wave Interactions , 2000, astro-ph/0103224.

[33]  General relativistic simulations of early jet formation in a rapidly rotating black hole magnetosphere , 1999, astro-ph/9907435.

[34]  Y. Lyubarskii Kink instability of relativistic force‐free jets , 1999 .

[35]  Kazunari Shibata,et al.  Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .

[36]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[37]  I. Mirabel,et al.  Sources of Relativistic Jets in the Galaxy , 1999, astro-ph/9902062.

[38]  S. Baum,et al.  Internal Structure of the Jets in 3C 353 , 1998 .

[39]  K. Shibata,et al.  General Relativistic Magnetohydrodynamic Simulations of Jets from Black Hole Accretion Disks: Two-Component Jets Driven by Nonsteady Accretion of Magnetized Disks , 1998 .

[40]  Y. Istomin,et al.  Stability of a relativistic rotating electron-positron jet: non-axisymmetric perturbations , 1996 .

[41]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[42]  J. Zensus,et al.  The Parsec-Scale Jet in Quasar 3C 345 , 1995 .

[43]  P. Hardee,et al.  The Stability and Collimation of Three-dimensional Jets , 1995 .

[44]  Y. Istomin,et al.  Stability of a relativistic rotating electron–positron jet , 1994 .

[45]  M. Norman,et al.  Spatial stability of the magnetized slab jet , 1992 .

[46]  G. Henri,et al.  Relativistic electron-positron beam formation in the framework of the two-flow model for active galactic nuclei , 1991 .

[47]  M. Birkinshaw The Kelvin–Helmholtz instability for relativistic particle beams – II. Flows bounded by a simple shear layer , 1991 .

[48]  W. Cotton,et al.  VLBI Observations of a Complete Sample of Radio Galaxies. VII. Study of the FR I Sources 3C 31, 4C 35.03, and 3C 264 , 1990, astro-ph/0101096.

[49]  R. Rosner,et al.  On the Stability of Magnetized Rotating Jets: The Nonaxisymmetric Modes , 1989 .

[50]  H. Sol,et al.  Two-flow model for extragalactic radio jets , 1989 .

[51]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[52]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[53]  R. D. Blandford,et al.  Accretion Disc Electrodynamics — A Model for Double Radio Sources , 1976 .

[54]  R. Lovelace,et al.  Dynamo model of double radio sources , 1976, Nature.

[55]  Philip M. Morse,et al.  The Relativistic Gas , 1958 .

[56]  J. Whittier,et al.  To J. P. , 1910 .