Diffusion – the Hidden Menace in Organic Optoelectronic Devices

In a film stack of bathocuproine (BCP) (electron transport layer), fac-tris(2-phenylpyridyl) iridium(III) [Ir(ppy)(3)] blended in 4,4'-bis(N-carbazolyl) biphenyl (CBP) (light-emitting layer), and 4,4',4 ''-tris(N -carbazolyl) triphenylamine (TCTA) (hole transport layer), the BCP and Ir(ppy) 3: CBP layers rapidly interdiffuse by anomalous Fickian diffusion. Diffusion leads to a decrease of up to 33% in the solid-state emission but no change in color.

[1]  D. Beke,et al.  Nanoscale volume diffusion , 2011, Journal of Materials Science.

[2]  Jeremy L. Ruggles,et al.  Investigating Morphology and Stability of Fac‐tris (2‐phenylpyridyl)iridium(III) Films for OLEDs , 2011 .

[3]  Jingui Qin,et al.  Organic host materials for phosphorescent organic light-emitting diodes. , 2011, Chemical Society reviews.

[4]  F. Klose,et al.  The multipurpose time-of-flight neutron reflectometer “Platypus” at Australia's OPAL reactor , 2011 .

[5]  S. Olthof,et al.  Improvement of voltage and charge balance in inverted top-emitting organic electroluminescent diodes comprising doped transport layers by thermal annealing , 2011 .

[6]  Andrew Nelson,et al.  Motofit – integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package , 2010 .

[7]  C. Tang,et al.  Effect of the highest occupied molecular orbital energy level offset on organic heterojunction photovoltaic cells , 2010 .

[8]  Franky So,et al.  Degradation Mechanisms in Small‐Molecule and Polymer Organic Light‐Emitting Diodes , 2010, Advanced materials.

[9]  X. Jing,et al.  Design of star-shaped molecular architectures based on carbazole and phosphine oxide moieties: towards amorphous bipolar hosts with high triplet energy for efficient blue electrophosphorescent devices , 2010 .

[10]  Yoshiharu Sato,et al.  Benzophosphole oxide and sulfide for thermally stable cathode buffer layers in organic thin-film photovoltaic devices. , 2010, Chemistry, an Asian journal.

[11]  Jang‐Joo Kim,et al.  Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes , 2009 .

[12]  Hyun-Jung Kim,et al.  Interface morphologies and interlayer diffusions in organic light emitting device by x-ray scattering , 2009 .

[13]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[14]  K. Walzer,et al.  Highly phosphorescent organic mixed films: The effect of aggregation on triplet-triplet annihilation , 2009 .

[15]  Andrew Grundstein,et al.  Maximum vehicle cabin temperatures under different meteorological conditions , 2009, International journal of biometeorology.

[16]  Ta-Ya Chu,et al.  A morphologically stable host material for efficient phosphorescent green and red organic light emitting devices , 2008 .

[17]  Barry P Rand,et al.  On the Role of Bathocuproine in Organic Photovoltaic Cells , 2008 .

[18]  M. Lei,et al.  Nonlinear interdiffusion in binary nanometer-scale multilayers submitted to thermal annealing , 2008 .

[19]  Chung-Chih Wu,et al.  3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence** , 2007 .

[20]  M. Lux‐Steiner,et al.  On the function of a bathocuproine buffer layer in organic photovoltaic cells , 2006 .

[21]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[22]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[23]  A. Nelson,et al.  Platypus: a time-of-flight neutron reflectometer at Australia’s new research reactor , 2006 .

[24]  Meng-Hsiu Wu,et al.  Low-power-consumption and long-lifetime OLED with a high Tg n-type organic transport material , 2004, SPIE Optics + Photonics.

[25]  Hany Aziz,et al.  Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices , 2004 .

[26]  Stephen R. Forrest,et al.  Efficient Organic Electrophosphorescent White‐Light‐Emitting Device with a Triple Doped Emissive Layer , 2004 .

[27]  D. Beke,et al.  Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubility , 2004 .

[28]  Ching Wan Tang,et al.  High-efficiency tandem organic light-emitting diodes , 2004 .

[29]  Stephen R. Forrest,et al.  Operational stability of electrophosphorescent devices containing p and n doped transport layers , 2003 .

[30]  Hany Aziz,et al.  Organic light emitting devices with enhanced operational stability at elevated temperatures , 2002 .

[31]  Stephen R. Forrest,et al.  High operational stability of electrophosphorescent devices , 2002 .

[32]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[33]  T Sigrist,et al.  Temperature Variations in Automobiles in Various Weather Conditions: An Experimental Contribution to the Determination of Time of Death , 2001, The American journal of forensic medicine and pathology.

[34]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[35]  A. Csík,et al.  Interdiffusion in amorphous Si/Ge multilayers by Auger depth profiling technique , 2001 .

[36]  Stephen R. Forrest,et al.  High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials , 2000 .

[37]  Ming Lu,et al.  Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System , 2000 .

[38]  S. Forrest,et al.  VERY HIGH-EFFICIENCY GREEN ORGANIC LIGHT-EMITTING DEVICES BASED ON ELECTROPHOSPHORESCENCE , 1999 .

[39]  Mark E. Thompson,et al.  Asymmetric Triaryldiamines as Thermally Stable Hole Transporting Layers for Organic Light-Emitting Devices , 1998 .

[40]  Stephen R. Forrest,et al.  Three-Color, Tunable, Organic Light-Emitting Devices , 1997 .

[41]  Ching Wan Tang,et al.  Organic electroluminescent devices with improved stability , 1996 .

[42]  Chihaya Adachi,et al.  Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes , 1995 .

[43]  Katsutoshi Nagai,et al.  Multilayer White Light-Emitting Organic Electroluminescent Device , 1995, Science.

[44]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[45]  Hiroshi Inada,et al.  Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4′,4″‐Tri(N‐carbazolyl)triphenylamine (TCTA) and 4,4′,4″‐Tris(3‐methylphenylphenylamino)triphenylamine (m‐MTDATA), as hole‐transport materials , 1994 .

[46]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[47]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[48]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.