Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells

[1]  M. Salmerón-Sánchez,et al.  Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products , 2020, The Biochemical journal.

[2]  Shouan Zhu,et al.  Sodium lactate promotes stemness of human mesenchymal stem cells through KDM6B mediated glycolytic metabolism. , 2020, Biochemical and biophysical research communications.

[3]  A. Bartolozzi,et al.  Elasticity spectra as a tool to investigate actin cortex mechanics , 2020, Journal of Nanobiotechnology.

[4]  M. Grumet,et al.  Trends in mesenchymal stem cell clinical trials 2004‐2018: Is efficacy optimal in a narrow dose range? , 2019, Stem cells translational medicine.

[5]  Siddhartha Das,et al.  Soft substrate maintains proliferative and adipogenic differentiation potential of human mesenchymal stem cells on long-term expansion by delaying senescence , 2019, Biology Open.

[6]  S. Nath Molecular mechanistic insights into uncoupling of ion transport from ATP synthesis. , 2018, Biophysical chemistry.

[7]  S. Meng,et al.  LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning , 2018, Stem Cell Research & Therapy.

[8]  Siddhartha Das,et al.  Soft Substrate Maintains Proliferative and Adipogenic Differentiation Potential of human Mesenchymal Stem Cells on Long Term Expansion by Delaying Senescence , 2018, bioRxiv.

[9]  David S. Wishart,et al.  MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis , 2018, Nucleic Acids Res..

[10]  Matthew J. Dalby,et al.  Receptor control in mesenchymal stem cell engineering , 2018 .

[11]  C. Strange,et al.  Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy , 2017, Stem cells translational medicine.

[12]  G. H. Coombs,et al.  Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine , 2017, PloS one.

[13]  Clare L. Bennett,et al.  Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation , 2017, Science Translational Medicine.

[14]  Athanasios Mantalaris,et al.  Metabolomics Analysis of the Osteogenic Differentiation of Umbilical Cord Blood Mesenchymal Stem Cells Reveals Differential Sensitivity to Osteogenic Agents , 2017, Stem cells and development.

[15]  Y. Mu,et al.  Mesenchymal stem cell therapy in type 2 diabetes mellitus , 2017, Diabetology & Metabolic Syndrome.

[16]  N. Gadegaard,et al.  Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency , 2017, Biomaterials.

[17]  Ben Wang,et al.  Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration , 2016, PeerJ.

[18]  Ping Jin,et al.  Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming , 2016, Oncotarget.

[19]  O. MacDougald,et al.  Reciprocal Control of Osteogenic and Adipogenic Differentiation by ERK/MAP Kinase Phosphorylation of Runx2 and PPARγ Transcription Factors , 2016, Journal of cellular physiology.

[20]  J. Locasale,et al.  Correction to: 'The Warburg Effect: How Does it Benefit Cancer Cells?': [Trends in Biochemical Sciences, 41 (2016) 211]. , 2016, Trends in biochemical sciences.

[21]  J. Locasale,et al.  The Warburg Effect: How Does it Benefit Cancer Cells? , 2016, Trends in biochemical sciences.

[22]  Ivan Martin,et al.  International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. , 2016, Cytotherapy.

[23]  E. Andreeva,et al.  Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro , 2016, Cytotechnology.

[24]  Junmin Lee,et al.  Geometric guidance of integrin mediated traction stress during stem cell differentiation. , 2015, Biomaterials.

[25]  Rein V. Ulijn,et al.  Selection of Lineage Guiding Metabolites in Stem Cell Cultures , 2015 .

[26]  Junmin Lee,et al.  Influence of Biophysical Parameters on Maintaining the Mesenchymal Stem Cell Phenotype. , 2015, ACS biomaterials science & engineering.

[27]  M. Maleki,et al.  Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells , 2014, International journal of stem cells.

[28]  Enateri V. Alakpa,et al.  Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs. , 2014, ACS nano.

[29]  Nikolaj Gadegaard,et al.  Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. , 2014, Nature materials.

[30]  Robert Langer,et al.  Materials for stem cell factories of the future. , 2014, Nature materials.

[31]  Keisuke Ito,et al.  Metabolic requirements for the maintenance of self-renewing stem cells , 2014, Nature Reviews Molecular Cell Biology.

[32]  M. Kassem,et al.  Concise Review: Bridging the Gap: Bone Regeneration Using Skeletal Stem Cell‐Based Strategies—Where Are We Now? , 2014, Stem cells.

[33]  Yufang Shi,et al.  Immunobiology of mesenchymal stem cells , 2013, Cell Death and Differentiation.

[34]  A. Friedenstein Marrow Stromal Fibroblasts , 2014, Calcified Tissue International.

[35]  B. Reid,et al.  Enhanced tissue production through redox control in stem cell-laden hydrogels. , 2013, Tissue engineering. Part A.

[36]  J. Triffitt,et al.  Faculty Opinions recommendation of The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. , 2013 .

[37]  Douglas Zhang,et al.  The effect of mesenchymal stem cell shape on the maintenance of multipotency. , 2013, Biomaterials.

[38]  David R McIlwain,et al.  Caspase functions in cell death and disease. , 2013, Cold Spring Harbor perspectives in biology.

[39]  D. Munn,et al.  Indoleamine 2,3 dioxygenase and metabolic control of immune responses. , 2013, Trends in immunology.

[40]  Rainer Breitling,et al.  mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data , 2012, Bioinform..

[41]  Xu Cao,et al.  The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine , 2013, Nature Medicine.

[42]  H. Northoff,et al.  Lactate Influences the Gene Expression Profile of Human Mesenchymal Stem Cells (hMSC) in a Dose Dependant Manner , 2012, Cellular Physiology and Biochemistry.

[43]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[44]  Zhaohui Zheng,et al.  Long-term culture in vitro impairs the immunosuppressive activity of mesenchymal stem cells on T cells. , 2012, Molecular medicine reports.

[45]  Nikolaj Gadegaard,et al.  Using nanotopography and metabolomics to identify biochemical effectors of multipotency. , 2012, ACS nano.

[46]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[47]  Joost D de Bruijn,et al.  The metabolism of human mesenchymal stem cells during proliferation and differentiation , 2011, Journal of cellular physiology.

[48]  N. Gadegaard,et al.  Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. , 2011, Nature materials.

[49]  G. Schatten,et al.  Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts , 2011, PloS one.

[50]  Max E Valentinuzzi,et al.  SAFETY AND EFFICACY , 2010 .

[51]  Duncan Graham,et al.  Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. , 2010, Lab on a chip.

[52]  Milan Mrksich,et al.  Geometric cues for directing the differentiation of mesenchymal stem cells , 2010, Proceedings of the National Academy of Sciences.

[53]  Matthias P Lutolf,et al.  Artificial Stem Cell Niches , 2009, Advanced materials.

[54]  A. Ben-Yehudah,et al.  Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. , 2009, Stem cell research.

[55]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[56]  K. Anseth,et al.  Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. , 2008, Nature materials.

[57]  G. Dini,et al.  Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study , 2008, The Lancet.

[58]  O. Lee,et al.  Coordinated Changes of Mitochondrial Biogenesis and Antioxidant Enzymes During Osteogenic Differentiation of Human Mesenchymal Stem Cells , 2008, Stem cells.

[59]  C. Wilkinson,et al.  The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. , 2007, Nature materials.

[60]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[61]  Renny T. Franceschi,et al.  Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development , 2007, The Journal of cell biology.

[62]  Andre Terzic,et al.  Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells , 2007, Nature Clinical Practice Cardiovascular Medicine.

[63]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[64]  P. Stehle,et al.  What are the essential elements needed for the determination of amino acid requirements in humans? , 2004, The Journal of nutrition.

[65]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[66]  C. Carlo-Stella,et al.  Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. , 2002, Blood.

[67]  P. Reeds,et al.  Dispensable and indispensable amino acids for humans. , 2000, The Journal of nutrition.

[68]  H. Niitani,et al.  [Phase II study]. , 1995, Gan to kagaku ryoho. Cancer & chemotherapy.

[69]  G S Stein,et al.  Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. , 1993, Endocrine reviews.

[70]  A. Friedenstein Precursor cells of mechanocytes. , 1976, International review of cytology.

[71]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[72]  Otto Warburn,et al.  THE METABOLISM OF TUMORS , 1931 .

[73]  O. Warburg,et al.  THE METABOLISM OF TUMORS IN THE BODY , 1927, The Journal of general physiology.