Surface acoustic wave solid-state rotational micromotor

Surface acoustic waves (SAWs) are used to drive a 1 mm diameter rotor at speeds exceeding 9000 rpm and torque of nearly 5 nNm. Unlike recent high-speed SAW rotary motors, however, the present design does not require a fluid coupling layer but interestingly exploits adhesive stiction as an internal preload, a force usually undesirable at these scales; with additional preloads, smaller rotors can be propelled to 15 000 rpm. This solid-state motor has no moving parts except for the rotor and is sufficiently simple to allow integration into miniaturized drive systems for potential use in microfluidic diagnostics, optical switching and microrobotics.

[1]  Julien Reboud,et al.  Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. , 2010, Lab on a chip.

[2]  Eugène Dieulesaint,et al.  Elastic Waves in Solids II , 2000 .

[3]  C. S. Hartmann,et al.  Overview of design challenges for single phase unidirectional SAW filters , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[4]  James Friend,et al.  Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics , 2009 .

[5]  Leslie Y Yeo,et al.  Surface acoustic wave concentration of particle and bioparticle suspensions , 2007, Biomedical microdevices.

[6]  Guang-Ming Zhang,et al.  Surface acoustic wave rotation motor , 2000 .

[7]  Kuang-Chen Liu,et al.  Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[9]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[10]  Mark O. Robbins,et al.  Statistical Mechanics of Static and Low‐Velocity Kinetic Friction , 2003 .

[11]  Takeshi Morita,et al.  Miniature piezoelectric motors , 2003 .

[12]  James Friend,et al.  Piezoelectric ultrasonic micro/milli-scale actuators , 2009 .

[13]  M. Kurosawa,et al.  Ultrasonic linear motor using surface acoustic waves , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Proceedings of IEEE Ultrasonics Symposium , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[15]  James Friend,et al.  Piezoelectric ultrasonic bidirectional linear actuator for micropositioning fulfilling Feynman's criteria , 2008 .

[16]  O. Braun Bridging the Gap Between the Atomic-Scale and Macroscopic Modeling of Friction , 2010 .

[17]  Y. Suzuki,et al.  Development of a new type piezoelectric micromotor , 2000 .

[18]  S. Zapperi,et al.  Suppression of friction by mechanical vibrations. , 2009, Physical review letters.

[19]  J. Klafter,et al.  The nonlinear nature of friction , 2004, Nature.

[20]  S. Ueha,et al.  An estimation of load characteristics of an ultrasonic motor by measuring transient responses , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  J. Yu,et al.  Miniaturization of surface acoustic waves rotary motor. , 2002, Ultrasonics.

[22]  K. Nakamura,et al.  A traveling-wave, modified ring linear piezoelectric microactuator with enclosed piezoelectric elements - the "scream" actuator , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  James Friend,et al.  A non-contact linear bearing and actuator via ultrasonic levitation , 2007 .

[24]  Chin‐Chong Tseng,et al.  Elastic Surface Waves on Free Surface and Metallized Surface of CdS, ZnO, and PZT‐4 , 1967 .