Effects of negative capacitance circuits on the vibration attenuation performance of a nonlinear piezoelectric metastructure

Nonlinear metamaterials present wideband and multimode vibration attenuation features leveraged by mechanisms such as internal resonances, bifurcations, and chaos. Nonlinearities can be provided to a metamaterial through periodic modulation of nonlinear constitutive material laws, by inducing periodic geometry asymmetries, or by including nonlinear local forces. This paper investigates the effects of nonlinear electrical attachments on the vibration attenuation performance of a onedimensional piezoelectric metamaterial. We investigate the effects of negative capacitance circuits on the restoring function of the nonlinear piezoelectric unit cell, whose linear term (controlled by the negative capacitance) can be rendered either positive or negative, paving the way towards the realization of monostable or bistable electromechanical attachments. We show that a piezoelectric metamaterial with nonlinear attachments attains enhanced broadband capabilities brought by the negative capacitance circuits. Numerical time- and frequency-domain analyses elucidate the effects of the nonlinear electrical attachments on the vibration attenuation of an one-dimensional electroelastic metastructure, revealing multimode attenuation features and attenuation bands substantially wider than the ones provided by a linear electroelastic counterpart.

[1]  J. A. Mosquera-Sánchez,et al.  Membrane smart metamaterials for unidirectional wave propagation problems , 2021 .

[2]  J. A. Mosquera-Sánchez,et al.  Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials , 2021 .

[3]  J. A. Mosquera-Sánchez,et al.  Dynamics and wave propagation in nonlinear piezoelectric metastructures , 2021, Nonlinear Dynamics.

[4]  M. Collet,et al.  Broadening low-frequency bandgaps in locally resonant piezoelectric metamaterials by negative capacitance , 2021 .

[5]  Dianlong Yu,et al.  Vibration properties and optimized design of a nonlinear acoustic metamaterial beam , 2021 .

[6]  M. Ruzzene,et al.  Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam , 2020, Nonlinear Dynamics.

[7]  Yemei Xia,et al.  Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting , 2020 .

[8]  M. Ruzzene,et al.  Nonreciprocity in acoustic and elastic materials , 2020, Nature Reviews Materials.

[9]  M. Ruzzene,et al.  Digitally Programmable Resonant Elastic Metamaterials , 2020 .

[10]  Carlos De Marqui,et al.  Effect of negative capacitance circuits on the performance of the piezoelectric nonlinear energy sink , 2020, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  Manuel Collet,et al.  Programmable metamaterials with digital synthetic impedance circuits for vibration control , 2020, Smart Materials and Structures.

[12]  Jean-François Deü,et al.  Reduced order finite element formulations for vibration reduction using piezoelectric shunt damping , 2019, Applied Acoustics.

[13]  Massimo Ruzzene,et al.  Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments , 2019, Applied Physics Letters.

[14]  Guoliang Huang,et al.  Adaptive metamaterials for broadband sound absorption at low frequencies , 2018, Smart Materials and Structures.

[15]  Kon-Well Wang,et al.  A piezo-metastructure with bistable circuit shunts for adaptive nonreciprocal wave transmission , 2018, Smart Materials and Structures.

[16]  M. A. Clementino,et al.  An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation , 2018, Journal of Sound and Vibration.

[17]  J.A.B. Gripp,et al.  Vibration and noise control using shunted piezoelectric transducers: A review , 2018, Mechanical Systems and Signal Processing.

[18]  Massimo Ruzzene,et al.  Design and Analysis of Piezoelectric Metamaterial Beams With Synthetic Impedance Shunt Circuits , 2018, IEEE/ASME Transactions on Mechatronics.

[19]  Jihong Wen,et al.  Ultra-low and ultra-broad-band nonlinear acoustic metamaterials , 2017, Nature Communications.

[20]  M. Ruzzene,et al.  An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures , 2017 .

[21]  D. Sounas,et al.  Static non-reciprocity in mechanical metamaterials , 2017, Nature.

[22]  M. Ruzzene,et al.  A general theory for bandgap estimation in locally resonant metastructures , 2016, 1612.03130.

[23]  Dianlong Yu,et al.  Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study. , 2016, Physical review. E.

[24]  Mohamed Ichchou,et al.  A wave-based design of semi-active piezoelectric composites for broadband vibration control , 2016 .

[25]  A. Srikantha Phani,et al.  Energy transmission in finite dissipative nonlinear periodic structures from excitation within a stop band , 2015 .

[26]  M. F. Lumentut,et al.  Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations , 2014 .

[27]  Brian P. Bernard,et al.  Experimental investigation of bifurcation induced bandgap reconfiguration , 2014 .

[28]  A. Croy,et al.  Nonlinear phononics using atomically thin membranes , 2014, Nature Communications.

[29]  Paolo Ermanni,et al.  Phononic Crystal with Adaptive Connectivity , 2014, Advanced materials.

[30]  Steven A Cummer,et al.  Non-reciprocal and highly nonlinear active acoustic metamaterials , 2014, Nature Communications.

[31]  Paolo Ermanni,et al.  Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials , 2012 .

[32]  G. Theocharis,et al.  Bifurcation-based acoustic switching and rectification. , 2011, Nature materials.

[33]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[34]  Daniel J. Inman,et al.  An electromechanical finite element model for piezoelectric energy harvester plates , 2009 .

[35]  A. Vakakis,et al.  Dynamic interactions of traveling waves propagating in a linear chain with an local essentially nonlinear attachment , 2009 .

[36]  Jakob Søndergaard Jensen,et al.  Low-frequency band gaps in chains with attached non-linear oscillators , 2007 .

[37]  Karl Popp,et al.  Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance , 2006 .

[38]  K. Kimura,et al.  Sound isolation by piezoelectric polymer films connected to negative capacitance circuits , 2002, IEEE Transactions on Dielectrics and Electrical Insulation.

[39]  L. Tang,et al.  Metamaterial beam with graded local resonators for broadband vibration suppression , 2021 .

[40]  Mickaël Lallart,et al.  Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks , 2017 .

[41]  Gang Wang,et al.  Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier–resonator feedback circuits , 2015 .

[42]  M. Ruzzene,et al.  Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates , 2009 .

[43]  Volume Su IEEE Standard on Piezoelectricity , 1984 .