The holographic electron density theorem and quantum similarity measures

How much information about the complete molecule is present in a part of the molecule? Quantum similarity measures provide comparisons between molecular electron densities based on integration over the whole space. Such integration involves boundaryless electron densities, whereas an early application of the Hohenberg—Kohn theorem to local subsystems of molecules requires these molecules to be confined to bounded, finite regions of the space. However, actual molecules have no boundaries, they are not confined to any finite region of the space. In order to find deterministic relations between local and global, boundaryless electron densities, and to classify the link between quantum similarity measures involving the full space and local subsystems, the unique extension property called the holographic property of subsystems of complete, boundaryless electron densities is established. Any nonzero volume piece of the ground state electron density completely determines the electron density of the complete, bou...

[1]  Paul G. Mezey,et al.  Iterated similarity sequences and shape ID numbers for molecules , 1994, J. Chem. Inf. Comput. Sci..

[2]  A. R. Marlow,et al.  Mathematical foundations of quantum theory , 1978 .

[3]  Catherine Burt,et al.  The application of molecular similarity calculations , 1990 .

[4]  Paul G. Mezey,et al.  Global and local relative convexity and oriented relative convexity; application to molecular shapes in external fields , 1988 .

[5]  Paul G. Mezey,et al.  Semisimilarity of molecular bodies: Scaling–nesting similarity measures , 1994 .

[6]  Robert Ponec,et al.  Similarity ideas in the theory of pericyclic reactivity , 1992, J. Chem. Inf. Comput. Sci..

[7]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[8]  Ramon Carbó,et al.  LCAO–MO similarity measures and taxonomy† , 1987 .

[9]  Paul G. Mezey,et al.  5 – Fuzzy Measures of Molecular Shape and Size , 1997 .

[10]  Paul G. Mezey,et al.  Molecular similarity measures of conformational changes and electron density deformations , 1996 .

[11]  Paul G. Mezey,et al.  Quantum chemistry of macromolecular shape , 1997 .

[12]  Paul G. Mezey,et al.  Dependence of MO shapes on a continuous measure of delocalization , 1988 .

[13]  R. Carbó,et al.  Molecular quantum similarity measures and N-dimensional representation of quantum objects. I. Theoretical foundations† , 1992 .

[14]  Paul G. Mezey,et al.  The degree of similarity of three-dimensional bodies: Application to molecular shape analysis , 1991 .

[15]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[16]  Ramon Carbó Molecular Similarity and Reactivity , 1995 .

[17]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Hassall Medicinal chemistry advances: Edited by F. G. De Las Heras and S. Vega. Pp. 512. Pergamon Press, Oxford. 1981. £33.00 , 1983 .

[19]  Edward E. Hodgkin,et al.  Molecular similarity based on electrostatic potential and electric field , 1987 .

[20]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[21]  Paul G. Mezey,et al.  Shape in Chemistry: An Introduction to Molecular Shape and Topology , 1993 .

[22]  Paul G. Mezey,et al.  Quantum similarity measures and Löwdin's transform for approximate density matrices and macromolecular forces , 1997 .

[23]  Paul G. Mezey,et al.  A TOPOLOGICAL ANALYSIS OF MOLECULAR SHAPE AND STRUCTURE , 1996 .

[24]  Paul G. Mezey,et al.  Molecular geometry and symmetry from a differential geometry viewpoint , 1997 .

[25]  Paul G. Mezey,et al.  The shape of molecular charge distributions: Group theory without symmetry , 1987 .

[26]  Paul G. Mezey,et al.  Functional Groups in Quantum Chemistry , 1996 .

[27]  Blanca Calabuig,et al.  Molsimil - 88: Molecular similarity calculations using a CNDO-like approximation , 1989 .

[28]  Mel Levy,et al.  Constrained-Search Formulation And Recent Coordinate Scaling In Density-Functional Theory , 1990 .

[29]  F. Schroeck On the entropic formulation of uncertainty for quantum measurements , 1989 .

[30]  Ramón Carbó,et al.  Molecular similarity and reactivity : from quantum chemical to phenomenological approaches , 1995 .

[31]  Paul G. Mezey,et al.  Shape group studies of molecular similarity: Shape groups and shape graphs of molecular contour surfaces , 1988 .

[32]  James Devillers,et al.  Neural Networks in QSAR and Drug Design , 1996 .

[33]  D. Avnir,et al.  Continuous Symmetry Measures. 4. Chirality , 1995 .

[34]  Ramon Carbot,et al.  Electrostatic potential comparison and molecular metric spaces , 1986 .

[35]  R. Carbó,et al.  Molecular quantum similarity measures and N‐dimensional representation of quantum objects. II. Practical applications , 1992 .

[36]  G. C. Hegerfeldt,et al.  Remarks on causality, localization, and spreading of wave packets , 1980 .

[37]  D. Rouvray Fuzzy Logic in Chemistry , 1997 .

[38]  Neil L. Allan,et al.  A momentum-space approach to molecular similarity , 1992, J. Chem. Inf. Comput. Sci..

[39]  Paul G. Mezey,et al.  Potential Energy Hypersurfaces , 1987 .

[40]  Boris R. Stefanov,et al.  An efficient approach to calculation of zero‐flux atomic surfaces and generation of atomic integration data , 1995, J. Comput. Chem..

[41]  Paul G. Mezey,et al.  Group theory of shapes of asymmetric biomolecules , 1987 .

[42]  Shmuel Peleg,et al.  Continuous Symmetry Measures. 2. Symmetry Groups and the Tetrahedron , 1993 .

[43]  Wolfgang Heiden,et al.  Topological analysis of complex molecular surfaces , 1992 .

[44]  E. Prugovec̆ki,et al.  Classical and quantum statistical mechanics in a common Liouville space , 1977 .

[45]  D. M. Healy,et al.  On informational completeness of covariant localization observables and Wigner coefficients , 1995 .

[46]  Mel Levy,et al.  Electron densities in search of Hamiltonians , 1982 .

[47]  F. Schroeck,et al.  Quantum Mechanics on Phase Space , 1995 .

[48]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[49]  Paul G. Mezey,et al.  Similarity analysis in two and three dimensions using lattice animals and polycubes , 1992 .

[50]  Paul G. Mezey,et al.  Topological shape analysis of chain molecules: An application of the GSTE principle , 1993 .