Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART)

In this paper, we propose two ordered-subset simultaneous algebraic reconstruction techniques (OS-SART). First, we describe the heuristics in support of the two OS-SART formulas. Then, we study the convergence in the framework of our recent work on the OS version of the Landweber scheme. It is shown that our first OS-SART is a special case of the OS version of the Landweber scheme. Hence, it converges in the weighted least square sense even in the case of inconsistent data. Both the OS-SART formulas are tested for reconstruction of CT images from practical data.

[1]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[2]  A. Lent,et al.  Iterative algorithms for large partitioned linear systems, with applications to image reconstruction , 1981 .

[3]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[4]  Y. Censor,et al.  Strong underrelaxation in Kaczmarz's method for inconsistent systems , 1983 .

[5]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[6]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[7]  Joseph A. O'Sullivan,et al.  Deblurring subject to nonnegativity constraints , 1992, IEEE Trans. Signal Process..

[8]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[9]  Joseph A. O'Sullivan,et al.  Iterative deblurring for CT metal artifact reduction , 1996, IEEE Trans. Medical Imaging.

[10]  Alvaro R. De Pierro,et al.  A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography , 1996, IEEE Trans. Medical Imaging.

[11]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[12]  Y. Censor,et al.  Parallel Optimization:theory , 1997 .

[13]  Ge Wang,et al.  An iterative algorithm for X-ray CT fluoroscopy , 1998, IEEE Transactions on Medical Imaging.

[14]  Wang,et al.  Iterative X-ray Cone-Beam Tomography for Metal Artifact Reduction and Local Region Reconstruction , 1999, Microscopy and Microanalysis.

[15]  Klaus Mueller,et al.  Anti-Aliased 3D Cone-Beam Reconstruction of Low-Contrast Objects with Algebraic Methods , 1999, IEEE Trans. Medical Imaging.

[16]  Klaus Mueller,et al.  Fast Implementation of Algebraic Methods for 3D Reconstruction from Cone-Beam Data , 1999, IEEE Trans. Medical Imaging.

[17]  G. Herman,et al.  Algebraic reconstruction techniques using smooth basis functions for helical cone-beam tomography , 2001 .

[18]  Hong Liu,et al.  Cone-beam reconstruction for Micro-CT , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[19]  Yair Censor,et al.  Block-Iterative Algorithms with Diagonally Scaled Oblique Projections for the Linear Feasibility Problem , 2002, SIAM J. Matrix Anal. Appl..

[20]  Ming Jiang,et al.  Development of iterative algorithms for image reconstruction , 2002 .

[21]  Ming Jiang,et al.  BLOCK-ITERATIVE ALGORITHMS FOR IMAGE RECONSTRUCTION , 2002 .

[22]  Ming Jiang,et al.  Convergence Studies on Iterative Algorithms for Image Reconstruction , 2003, IEEE Trans. Medical Imaging.