Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods / Prévision du débit du Nil à moyen terme: une comparaison de méthodes stochastiques et déterministes

Abstract Due to its great importance, the availability of long flow records, contemporary as well as older, and the additional historical information of its behaviour, the Nile is an ideal test case for identifying and understanding hydrological behaviours, and for model development. Such behaviours include the long-term persistence, which historically has motivated the discovery of the Hurst phenomenon and has put into question classical statistical results and typical stochastic models. Based on the empirical evidence from the exploration of the Nile flows and on the theoretical insights provided by the principle of maximum entropy, a concept newly employed in hydrological stochastic modelling, an advanced yet simple stochastic methodology is developed. The approach is focused on the prediction of the Nile flow a month ahead, but the methodology is general and can be applied to any type of stochastic prediction. The stochastic methodology is also compared with deterministic approaches, specifically an analogue (local nonlinear chaotic) model and a connectionist (artificial neural network) model based on the same flow record. All models have good performance with the stochastic model outperforming in prediction skills and the analogue model in simplicity. In addition, the stochastic model has other elements of superiority such as the ability to provide long-term simulations and to improve understanding of natural behaviours.

[1]  Aris P. Georgakakos,et al.  Decision support systems for integrated water resources management with an application to the nile basin , 2007 .

[2]  C. Tsallis,et al.  Nonextensive foundation of Lévy distributions. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  A. Zawadzki,et al.  On Kolmogorov's superpositions: novel gates and circuits for nanoelectronics? , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[4]  Demetris Koutsoyiannis,et al.  Coupling stochastic models of different timescales , 2001 .

[5]  Demetris Koutsoyiannis The Hurst phenomenon and fractional Gaussian noise made easy , 2002 .

[6]  Demetris Koutsoyiannis A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series , 2000 .

[7]  Timothy A. Cohn,et al.  Nature's style: Naturally trendy , 2005 .

[8]  Demetris Koutsoyiannis,et al.  Statistical analysis of hydroclimatic time series: Uncertainty and insights , 2007 .

[9]  Ozgur Kisi,et al.  Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .

[10]  Tiesong Hu,et al.  A Modified Neural Network for Improving River Flow Prediction , 2005 .

[11]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[12]  Upmanu Lall,et al.  A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series , 1996 .

[13]  Orazio Giustolisi,et al.  Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions , 2006 .

[15]  Demetris Koutsoyiannis,et al.  Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology , 1999 .

[16]  Dimitri P. Solomatine,et al.  Baseflow separation techniques for modular artificial neural network modelling in flow forecasting , 2007 .

[17]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 1. Propriétés distributionnelles marginales des processus hydrologiques et , 2005 .

[18]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[19]  Demetris Koutsoyiannis,et al.  On the quest for chaotic attractors in hydrological processes , 2006 .

[20]  Chen Shou-yu,et al.  Fuzzy Optimization Neural Network Approach for Ice Forecast in the Inner Mongolia Reach of the Yellow River/Approche d'Optimisation Floue de Réseau de Neurones pour la Prévision de la Glace Dans le Tronçon de Mongolie Intérieure du Fleuve Jaune , 2005 .

[21]  S. Thomas Ng,et al.  A Modified Neural Network for Improving River Flow Prediction/Un Réseau de Neurones Modifié pour Améliorer la Prévision de L'Écoulement Fluvial , 2005 .

[22]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.

[23]  Orazio Giustolisi,et al.  Improving generalization of artificial neural networks in rainfall–runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluie-débit , 2005 .

[24]  A. Georgakakos,et al.  Assessment of Folsom Lake response to historical and potential future climate scenarios: 2. Reservoir management , 2001 .

[25]  V. Tikhomirov On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of one Variable and Addition , 1991 .

[26]  Paulin Coulibaly,et al.  Seasonal reservoir inflow forecasting with low-frequency climatic indices: a comparison of data-driven methods , 2007 .

[27]  N. J. DE VOS,et al.  Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model , 2007 .

[28]  Aris P. Georgakakos,et al.  Assessment of Folsom Lake Response to Historical and Potential Future Climate Scenarios , 2000 .

[29]  Vera Kurková,et al.  Kolmogorov's theorem and multilayer neural networks , 1992, Neural Networks.

[30]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 2. Dépendance temporelle des processus hydrologiques et échelle temporelle , 2005 .

[31]  D. Conway,et al.  From headwater tributaries to international river: Observing and adapting to climate variability and change in the Nile basin , 2005 .

[32]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[33]  A. Heppenstall,et al.  Timing error correction procedure applied to neural network rainfall—runoff modelling , 2007 .

[34]  J. Hosking Modeling persistence in hydrological time series using fractional differencing , 1984 .

[35]  Robert J. Abrahart,et al.  Hydroinformatics: computational intelligence and technological developments in water science applications—Editorial , 2007 .

[36]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[37]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[38]  Horst Stöcker,et al.  Thermodynamics and Statistical Mechanics , 2002 .

[39]  D. Savić,et al.  A symbolic data-driven technique based on evolutionary polynomial regression , 2006 .

[40]  W. Li,et al.  Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series , 2006 .

[41]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[42]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[43]  D. Solomatine,et al.  Model trees as an alternative to neural networks in rainfall—runoff modelling , 2003 .

[44]  Demetris Koutsoyiannis,et al.  A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour , 2006 .

[45]  Demetris Koutsoyiannis,et al.  Climate change, the Hurst phenomenon, and hydrological statistics , 2003 .