Modulation of ion uptake across posterior gills of the crab Chasmagnathus granulatus by dopamine and cAMP.

[1]  K. Anger,et al.  Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina , 1994, Helgoländer Meeresuntersuchungen.

[2]  K. Anger,et al.  Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina) , 1994, Helgoländer Meeresuntersuchungen.

[3]  G. Genovese,et al.  Na+/K+–ATPase activity and gill ultrastructure in the hyper-hypo-regulating crab Chasmagnathus granulatus acclimated to dilute, normal, and concentrated seawater , 2004 .

[4]  D. Towle,et al.  Na(+)+K(+)-ATPase in gills of aquatic crustacea. , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[5]  H. Onken,et al.  Active NaCl absorption across posterior gills of hyperosmoregulating Chasmagnathus granulatus , 2003, Journal of Experimental Biology.

[6]  P. Devos,et al.  Dopamine D1 receptors in the gills of Chinese crab Eriocheir sinensis. , 2002, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[7]  G. Charmantier,et al.  Ontogeny of osmoregulation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda) , 2002 .

[8]  C. Luquet,et al.  Transepithelial potential differences and Na(+) flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity. , 2002, The Journal of experimental biology.

[9]  D. Towle,et al.  Na(+)+K(+)-ATPase in gills of the blue crab Callinectes sapidus: cDNA sequencing and salinity-related expression of alpha-subunit mRNA and protein. , 2001, The Journal of experimental biology.

[10]  S. Morris,et al.  Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. , 2001, The Journal of experimental biology.

[11]  G. Flik,et al.  Na+-K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. , 1999, American journal of physiology. Regulatory, integrative and comparative physiology.

[12]  C. Luquet,et al.  PHYSIOLOGICAL RESPONSE TO EMERSION IN THE AMPHIBIOUS CRAB CHASMAGNATHUS GRANULATA DANA (DECAPODA GRAPSIDAE) : BIOCHEMICAL AND VENTILATORY ADAPTATIONS , 1998 .

[13]  E. Rodríguez,et al.  Effects of Cadmium on Gill Na,K-ATPase of the Estuarine Crab Chasmagnathus granulata (Decapoda, Grapsidae) During Postmolt: In Vivo and In Vitro Studies , 1998, Bulletin of environmental contamination and toxicology.

[14]  P. Devos,et al.  Dopamine as a Modulator of Ionic Transport and Na+/k+-atpase Activity in the Gills of the Chinese Crab Eriocheir Sinensis , 1998 .

[15]  H. Onken,et al.  NaCl absorption across split gill lamellae of hyperregulating crabs: Transport mechanisms and their regulation , 1998 .

[16]  S. Morris,et al.  Control of osmoregulation via regulation of Na+K+-ATPase activity in the amphibious purple shore crab Leptograpsus variegatus , 1995 .

[17]  A. Péqueux,et al.  OSMOTIC REGULATION IN CRUSTACEANS , 1995 .

[18]  Riestenpatt,et al.  CYCLIC AMP STIMULATION OF ELECTROGENIC UPTAKE OF Na+ AND Cl- ACROSS THE GILL EPITHELIUM OF THE CHINESE CRAB ERIOCHEIR SINENSIS , 1994, The Journal of experimental biology.

[19]  F. D'incao,et al.  Responses of Chasmagnathus granulata Dana (Decapoda: Grapsidae) to salt-marsh environmental variations , 1992 .

[20]  H. H. Taylor Gills and Lungs : The Exchange of Gases and Ions , 1992 .

[21]  F. I. Kamemoto Neuroendocrinology of osmoregulation in crabs , 1991 .

[22]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[23]  R. Gilles,et al.  Cyclic AMP as a modulator of NaCl transport in gills of the euryhaline Chinese crabEriocheir sinensis , 1990 .

[24]  P. Devos,et al.  Biomines-stimulated phosphorylation and (Na+, K+-ATPase in the gills of the chinese crab, Eriocheir sinensis , 1989 .

[25]  L. Mantel,et al.  Effect of dopamine, cyclic AMP, and pericardial organs on sodium uptake and Na/K-ATPase activity in gills of the green crab Carcinus maenas (L) , 1988 .

[26]  D. Lohrmann,et al.  The effect of dibutyryl cAMP on sodium uptake by isolated perfused gills of Callinectes sapidus. , 1987, General and comparative endocrinology.

[27]  C. Murakata,et al.  K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. , 1987, Biochemical and biophysical research communications.

[28]  D. Towle,et al.  Basolateral localization of Na++K+-ATPase in gill epithelium of two osmoregulating crabs, Callinectes sapidus and Carcinus maenas , 1986 .

[29]  D. Siebers,et al.  Amiloride-Sensitive Sodium Flux and Potentials in Perfused Carcinus Gill: Preparations , 1986 .

[30]  L. Mantel Neurohormonal Integration of Osmotic and Ionic Regulation , 1985 .

[31]  D. Weichart,et al.  Na-K-ATPase generates an active transport potential in the gills of the hyperregulating shore crab Carcinus maenas , 1985 .

[32]  G. Robinson,et al.  Inducement of increased gill NA+-K+ ATPase activity by a hemolymph factor in hyperosmoregulating Callinectes sapidus , 1983 .

[33]  J. Daly,et al.  Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Chasin,et al.  Inhibitory and activators of cyclic nucleotide phosphodiesterase. , 1976, Advances in cyclic nucleotide research.

[35]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.