Hilbert-Kunz Multiplicity of Two-Dimensional Local Rings

We study the behavior of Hilbert-Kunz multiplicity for powers of an ideal, especially the case of stable ideals and ideals in local rings of dimension 2. We can characterize regular local rings by certain equality between Hilbert-Kunz multiplicity and usual multiplicity. We show that rings with “minimal” Hilbert-Kunz multiplicity relative to usual multiplicity are “Veronese subrings” in dimension 2.

[1]  D. Hanes BOUNDS ON MULTIPLICITIES OF LOCAL RINGS , 2002 .

[2]  S. Goto,et al.  Multiplicity and Tight Closures of Parameters , 2001 .

[3]  C. Huneke,et al.  Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular , 2001, math/0209291.

[4]  KEN-ICHI Yoshida,et al.  Hilbert–Kunz multiplicity, McKay correspondence and good ideals¶in two-dimensional rational singularities , 2001 .

[5]  KEN-ICHI Yoshida,et al.  Hilbert–Kunz Multiplicity and an Inequality between Multiplicity and Colength☆ , 2000 .

[6]  G. Seibert The Hilbert-Kunz function of rings of finite Cohen-Macaulay type , 1997 .

[7]  Aldo Conca,et al.  Hilbert-Kunz function of monomial ideals and binomial hypersurfaces , 1996 .

[8]  Qun Chen,et al.  Hilbert-Kunz functions of cubic curves and surfaces , 1996, alg-geom/9610009.

[9]  M. Rossi,et al.  On the coefficients of the Hilbert polynomial , 1996 .

[10]  C. Huneke Tight closure and its applications , 1996 .

[11]  M. Hochster,et al.  $F$-regularity, test elements, and smooth base change , 1994 .

[12]  C. Han,et al.  Some surprising Hilbert-Kunz functions , 1993 .

[13]  J. Verma Joint reductions and Rees algebras , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  J. Verma Joint reductions of complete ideals , 1990, Nagoya Mathematical Journal.

[15]  Craig Huneke,et al.  Tight closure, invariant theory, and the Briançon-Skoda theorem , 1990 .

[16]  G. Seibert Complexes with homology of finite length and Frobenius functors , 1989 .

[17]  T. Marley The Coefficients of the Hilbert Polynomial and the Reduction Number of an Ideal , 1989 .

[18]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[19]  Kei-ichi Watanabe,et al.  A Characterization of F -Regularity in Terms of F -Purity , 1989 .

[20]  C. Huneke Hilbert functions and symbolic powers. , 1987 .

[21]  A. Ooishi Genera and arithmetic genera of commutative rings , 1987 .

[22]  David Eisenbud,et al.  Linear Free Resolutions and Minimal Multiplicity , 1984 .

[23]  S. Dutta Frobenius and multiplicities , 1983 .

[24]  J. Sally Cohen-Macaulay local rings of embedding dimension e + d − 2 , 1983 .

[25]  P. Monsky The Hilbert-Kunz function , 1983 .

[26]  J. Sally Commutative Algebra: Reductions, local cohomology and hilbert functions of local rings , 1983 .

[27]  D. Rees Hilbert Functions and Pseudo-Rational Local Rings of Dimension Two , 1981 .

[28]  S. X. Descamps On projective varieties of minimal degree , 1981 .

[29]  Kei-ichi Watanabe,et al.  On graded rings, I , 1978 .

[30]  J. Sally On the associated graded ring of a local Cohen-Macaulay ring , 1977 .

[31]  J. Sally Bounds for numbers of generators of Cohen-Macaulay ideals. , 1976 .

[32]  E. Kunz ON NOETHERIAN RINGS OF CHARACTERISTIC p. , 1976 .

[33]  E. Kunz Characterizations of Regular Local Rings of Characteristic p , 1969 .

[34]  J. Lipman Rational singularities, with applications to algebraic surfaces and unique factorization , 1969 .

[35]  D. Rees A Note on Analytically Unramified Local Rings , 1961 .

[36]  D. Northcott A Note on the Coefficients of the Abstract Hilbert Function , 1960 .