Vibrational excitations in H2O in the framework of a local model

The vibrational description of H2 16 O in terms of Morse local oscillators for both bending and stretching degrees of freedom is presented. Expansions of the kinetic and potential energies of the vibrational Hamiltonian are considered up to quartic terms. The local Morse coordinates yi as well as the momenta pi are thereafter expanded in terms of creation and annihilation operators of the Morse functions keeping terms up to order 1= ffiffiffi p (up to quadratic terms in the operators), where j is a parameter related with the depth of the potential. Only terms conserving the polyad are considered. The resulting Hamiltonian includes the known Darling– Dennison and Fermi-like interactions, but unlike the description in terms of a harmonic basis, all the force constants up to quartic order are involved. A tensorial formalism is developed to expand the Hamiltonian in powers of 1= ffiffiffi p in terms of symmetry adapted operators. An energy fit is carried out for 72 experimental energies up to 23 000 cm � 1 , obtaining an rms deviation of 5.00 cm � 1 . The force constants are determined and predictions for the isotopes H2 17 O, H2 18 O, D2 16 O, and T2 16 O are presented.

[1]  S. Carter,et al.  Potential models and local mode vibrational eigenvalue calculations for acetylene , 1982 .

[2]  R. Silbey,et al.  Pure bending dynamics in the acetylene X̃ 1Σg+ state up to 15 000 cm−1 of internal energy , 1998 .

[3]  S. Dong,et al.  Ladder operators for the Morse potential , 2002 .

[4]  Joaquín Gómez-Camacho,et al.  An su(1, 1) dynamical algebra for the Morse potential , 2004 .

[5]  William E. Cooke,et al.  High Resolution Spectroscopy , 1982 .

[6]  J. A. Williams,et al.  Energetics, wave functions, and spectroscopy of coupled anharmonic oscillators , 1983 .

[7]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .

[8]  J. Tennyson,et al.  Relativistic correction to the potential energy surface and vibration-rotation levels of water , 1998 .

[9]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[10]  Renato Lemus,et al.  A general method to obtain vibrational symmetry adapted bases in a local scheme , 2003 .

[11]  H. Pickett Vibration—Rotation Interactions and the Choice of Rotating Axes for Polyatomic Molecules , 1972 .

[12]  David M. Dennison,et al.  The Water Vapor Molecule , 1940 .

[13]  Per Jensen,et al.  Computational molecular spectroscopy , 2000, Nature Reviews Methods Primers.

[14]  P. Jensen A new morse oscillator-rigid bender internal dynamics (MORBID) Hamiltonian for triatomic molecules , 1988 .

[15]  Gengxin Chen,et al.  Approximate constants of motion and energy transfer pathways in highly excited acetylene , 1991 .

[16]  A. Mullin,et al.  Group Theory and its Applications to Physical Problems , 1962 .

[17]  M. Child,et al.  Excited stretching vibrations of water: the quantum mechanical picture , 1980 .

[18]  A. Frank,et al.  Systematic polyad mixing in a local mode model , 2001 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  S. J. Cole,et al.  The quartic force field of H2O determined by many‐body methods. II. Effects of triple excitations , 1987 .

[21]  Frank,et al.  Vibrational Excitations of Methane in the Framework of a Local-Mode Anharmonic Model. , 2000, Journal of molecular spectroscopy.

[22]  H. Wyld,et al.  Mathematical methods for physics / H.W. Wyld , 1976 .

[23]  L. Halonen,et al.  A local mode model for tetrahedral molecules , 1982 .

[24]  T. Carrington,et al.  Fermi resonances and local modes in water, hydrogen sulfide, and hydrogen selenide , 1988 .

[25]  M. Sage Morse oscillator transition probabilities for molecular bond modes , 1978 .

[26]  R. Field,et al.  Spectroscopic investigation of the generation of “isomerization” states: Eigenvector analysis of the bend-CP stretch polyad , 1998 .

[27]  Faraday Discuss , 1985 .

[28]  L. Halonen Stretching vibrational overtone and combination states in silicon tetrafluoride , 1986 .

[29]  P. Jensen The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach , 1989 .

[30]  D. Watt,et al.  A variational localized representation calculation of the vibrational levels of the water molecule up to 27 000 cm−1 , 1988 .

[31]  A. Frank,et al.  An extended SU(2) model for coupled Morse oscillators , 2000 .

[32]  Jin-quan Chen Group Representation Theory For Physicists , 1989 .

[33]  T. Carrington,et al.  CALCULATION OF VIBRATIONAL FUNDAMENTAL AND OVERTONE BAND INTENSITIES OF H2O , 1994 .

[34]  J. Baggott Normal modes and local modes in H2 X: beyond the x, K relations , 1988 .

[35]  M. Child,et al.  Local and Normal Vibrational States: a Harmonically Coupled Anharmonic-oscillator Model , 1981 .

[36]  M. Berrondo,et al.  The algebraic approach to the Morse oscillator , 1980 .

[37]  P. Machnikowski,et al.  Some properties of double-Morse potentials , 1998 .

[38]  A. Klein,et al.  Shell‐Model Applications in Nuclear Spectroscopy , 1978 .

[39]  A. Frank,et al.  Algebraic Methods in Molecular and Nuclear Structure Physics , 1994 .

[40]  R. Stephen Berry,et al.  Algebraic theory of molecules , 1994 .

[41]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[42]  H. Wyld,et al.  Mathematical Methods for Physics , 1976 .

[43]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[44]  M. Hamermesh Group theory and its application to physical problems , 1962 .

[45]  A. Frank,et al.  Spectroscopic Description of H2O in the su(2) Vibron Model Approximation , 2002 .

[46]  D. Papoušek,et al.  Molecular vibrational-rotational spectra , 1982 .

[47]  M. E. Kellman Approximate constants of motion for vibrational spectra of many-oscillator systems with multiple anharmonic resonances , 1990 .

[48]  Frank,et al.  On the Elimination of Spurious Modes in Algebraic Models of Molecular Vibrations. , 1999, Journal of molecular spectroscopy.

[49]  D. Nesbitt,et al.  Vibrational Energy Flow in Highly Excited Molecules: Role of Intramolecular Vibrational Redistribution , 1996 .

[50]  P. Jensen An introduction to the theory of local mode vibrations , 2000 .

[51]  R. Meyer,et al.  General Internal Motion of Molecules, Classical and Quantum‐Mechanical Hamiltonian , 1968 .

[52]  A general algebraic model for molecular vibrational spectroscopy , 1996, chem-ph/9604005.