Novel procedure for characterizing nonlinear systems with memory: 2017 update
暂无分享,去创建一个
The present article discusses novel improvements in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra or 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] . The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order and alleviate the Curse of Dimensionality (COD) in order to realize practical nonlinear solutions of scientific and engineering interest.
[1] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[2] Albert H. Nuttall,et al. Bandlimited computerized improvements in characterization of nonlinear systems with memory , 2016, SPIE Defense + Security.
[3] Benjamin Pfaff. Theory Of Functionals And Of Integral And Integro Differential Equations , 2016 .