Hole transport assisted by the piezoelectric field in In0.4Ga0.6N/GaN quantum wells under electrical injection

The authors observe the significant penetration of electrically injected holes through InGaN/GaN quantum wells (QWs) with an indium mole fraction of 40%. This effect and its current density dependence were analysed by studies on micro-pixel light-emitting diodes, which allowed current densities to be varied over a wide range up to 5 kA/cm2. The systematic changes in electroluminescence spectra are discussed in the light of the piezoelectric field in the high-indium-content QWs and its screening by the carriers. Simulations were also carried out to clarify the unusual hole transport mechanism and the underlying physics in these high-indium QWs.

[1]  Kei May Lau,et al.  Comparison of blue and green InGaN/GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy , 2005 .

[2]  M. Schubert,et al.  Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells , 2010 .

[3]  Cheolsoo Sone,et al.  Visible‐Color‐Tunable Light‐Emitting Diodes , 2011, Advanced materials.

[4]  Hao-Chung Kuo,et al.  Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  E. Fred Schubert,et al.  Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes , 2011 .

[6]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[7]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[8]  Erdan Gu,et al.  CMOS-Controlled Color-Tunable Smart Display , 2012, IEEE Photonics Journal.

[9]  Erdan Gu,et al.  Size-dependent capacitance study on InGaN-based micro-light-emitting diodes , 2014 .

[10]  Hadis Morkoç,et al.  Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells , 2008 .

[11]  Giovanni Ghione,et al.  Electroluminescence Analysis and Simulation of the Effects of Injection and Temperature on Carrier Distribution in InGaN-Based Light-Emitting Diodes with Color-Coded Quantum Wells , 2013 .

[12]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[13]  Pleun Maaskant,et al.  Carrier distribution in InGaN/GaN tricolor multiple quantum well light emitting diodes , 2009 .

[14]  S. Nakamura,et al.  Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes , 1999 .

[15]  Chih-Chung Yang,et al.  Orange–Red Light-Emitting Diodes Based on a Prestrained InGaN–GaN Quantum-Well Epitaxy Structure , 2006, IEEE Photonics Technology Letters.

[16]  Liann-Be Chang,et al.  High-Efficiency InGaN-Based Yellow-Green Light-Emitting Diodes , 2010 .

[17]  J. Sheu,et al.  Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer , 2006 .

[18]  Zhe Chuan Feng,et al.  Optical and structural properties of InGaN/GaN multiple quantum well structure grown by metalorganic chemical vapor deposition , 2006 .

[19]  S.C. Wang,et al.  Temperature-Dependent Electroluminescence Efficiency in Blue InGaN–GaN Light-Emitting Diodes With Different Well Widths , 2010, IEEE Photonics Technology Letters.

[20]  James S. Speck,et al.  Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors , 2000 .

[21]  S. Chang,et al.  High-Indium-Content InGaN/GaN Multiple-Quantum-Well Light-Emitting Diodes , 2003 .

[22]  C. Kuo,et al.  Optical Simulation and Fabrication of Nitride-Based LEDs With the Inverted Pyramid Sidewalls , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Weimin Du,et al.  Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes , 2012 .

[24]  Vincenzo Fiorentini,et al.  Nonlinear macroscopic polarization in III-V nitride alloys , 2001 .

[25]  R. Dupuis,et al.  Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  M. S. Wartak,et al.  Electronic Band Structure and Material Gain of Dilute Nitride Quantum Wells Grown on InP Substrate , 2015, IEEE Journal of Quantum Electronics.

[27]  Jung-Hoon Song,et al.  Well-to-well non-uniformity in InGaN/GaN multiple quantum wells characterized by capacitance-voltage measurement with additional laser illumination , 2012 .

[28]  Lei Liu,et al.  Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes , 2012 .

[29]  Shun Lien Chuang,et al.  A band-structure model of strained quantum-well wurtzite semiconductors , 1997 .

[30]  G. Wang,et al.  Improved carrier injection and efficiency droop in InGaN/GaN light-emitting diodes with step-stage multiple-quantum-well structure and hole-blocking barriers , 2013 .

[31]  M. Dawson,et al.  Electrical, spectral and optical performance of yellow–green and amber micro-pixelated InGaN light-emitting diodes , 2011 .

[32]  J. Brault,et al.  Metal Organic Vapor Phase Epitaxy of Monolithic Two-Color Light-Emitting Diodes Using an InGaN-Based Light Converter , 2013 .

[33]  Larry A. Coldren,et al.  Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures , 1998 .

[34]  S. Nunoue,et al.  Development of InGaN-based red LED grown on (0001) polar surface , 2014 .

[35]  Yen-Kuang Kuo,et al.  Enhancement of Light Power for Blue InGaN LEDs by Using Low-Indium-Content InGaN Barriers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Jeng-Jie Huang,et al.  X-ray diffraction study on an InGaN∕GaN quantum-well structure of prestrained growth , 2007 .

[37]  Baoping Zhang,et al.  Efficient hole transport in asymmetric coupled InGaN multiple quantum wells , 2009 .

[38]  Hadis Morkoç,et al.  InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes , 2010 .

[39]  E. Schubert,et al.  Efficiency droop in light‐emitting diodes: Challenges and countermeasures , 2013 .

[40]  Heqing Wang,et al.  Barrier effect on hole transport and carrier distribution in InGaN∕GaN multiple quantum well visible light-emitting diodes , 2008 .

[41]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[42]  Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes , 2012 .

[43]  A. Holmes,et al.  Optical gain modeling of InP based InGaAs(N)/GaAsSb type-II quantum wells laser for mid-infrared emission , 2013 .

[44]  Z. J. Yang,et al.  Analysis of optical gain property in the InGaN/GaN triangular shaped quantum well under the piezoelectric field , 2009 .

[45]  Takashi Mukai,et al.  Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well , 2002 .

[46]  Michael R. Krames,et al.  Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes , 2008 .

[47]  Hongxing Jiang,et al.  III-nitride micro-emitter arrays: development and applications , 2008 .

[48]  H X Jiang,et al.  Nitride micro-LEDs and beyond--a decade progress review. , 2013, Optics express.

[49]  S. P. McAlister,et al.  A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure , 1992 .

[50]  Erdan Gu,et al.  Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes , 2010 .

[51]  H. Kuo,et al.  Effects of Built-In Polarization and Carrier Overflow on InGaN Quantum-Well Lasers With Electronic Blocking Layers , 2008, Journal of Lightwave Technology.