Topological containment of the 5-clique minus an edge in 4-connected graphs

The topological containment problem is known to be polynomial-time solvable for any fixed pattern graph $H$, but good characterisations have been found for only a handful of non-trivial pattern graphs. The complete graph on five vertices, $K_5$, is one pattern graph for which a characterisation has not been found. The discovery of such a characterisation would be of particular interest, due to the Haj\'os Conjecture. One step towards this may be to find a good characterisation of graphs that do not topologically contain the simpler pattern graph $K_5^-$, obtained by removing a single edge from $K_5$. This paper makes progress towards achieving this, by showing that every 4-connected graph must contain a $K_5^-$-subdivision.

[1]  Paul A. Catlin,et al.  Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.

[2]  Jie Ma,et al.  Independent paths and K5-subdivisions , 2010, J. Comb. Theory, Ser. B.

[3]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[4]  Neil Robertson,et al.  The structure of graphs not topologically containing the Wagner graph , 2016, J. Comb. Theory, Ser. B.

[5]  D. W. Hall A note on primitive skew curves , 1943 .

[6]  R. Duffin Topology of series-parallel networks , 1965 .

[7]  H. Jung,et al.  Über Minimalstrukturen von Graphen, insbesondere vonn-fach zusammenhängenden Graphen , 1963 .

[8]  F. Harary,et al.  Planar Permutation Graphs , 1967 .

[9]  Jie Ma,et al.  Subdivisions of K5 in graphs containing K2, 3 , 2015, J. Comb. Theory, Ser. B.

[10]  W. Sierpinski,et al.  Sur le probléme des courbes gauches en Topologie , 2022 .

[11]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[12]  Jie Ma,et al.  K5-Subdivisions in graphs containing K-4 , 2013, J. Comb. Theory, Ser. B.

[13]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[14]  Graham Farr The subgraph homeomorphism problem for small wheels , 1988, Discret. Math..

[15]  Graham Farr,et al.  Structure and Recognition of Graphs with No 6-wheel Subdivision , 2009, Algorithmica.

[16]  Paul Wollan,et al.  Finding topological subgraphs is fixed-parameter tractable , 2010, STOC.

[17]  W. T. Tutte Connectivity in graphs , 1966 .

[18]  Wolfgang Mader,et al.  3n − 5 Edges Do Force a Subdivision of , 1998, Comb..

[19]  P. Seymour,et al.  Surveys in combinatorics 1985: Graph minors – a survey , 1985 .

[20]  Graham Farr,et al.  Graphs with no 7-wheel subdivision , 2013, Discret. Math..

[21]  Paul Seymour,et al.  Detecting Matroid Minors , 1981 .

[22]  G. Dirac A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .

[23]  Dániel Marx,et al.  Structure theorem and isomorphism test for graphs with excluded topological subgraphs , 2011, STOC '12.