Quasi-interpolation in isogeometric analysis based on generalized B-splines
暂无分享,去创建一个
Carla Manni | Francesca Pelosi | Paolo Costantini | Maria Lucia Sampoli | C. Manni | F. Pelosi | M. Sampoli | P. Costantini
[1] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[2] C. D. Boor,et al. Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .
[3] Miljenko Marušić,et al. Sharp error bounds for interpolating splines in tension , 1995 .
[4] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[5] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[6] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[7] Juan Manuel Peña,et al. Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..
[8] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[9] T. Lyche,et al. Some examples of quasi-interpolants constructed from local spline projectors , 2001 .
[10] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[11] Tom Lyche,et al. Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.
[12] C. Micchelli,et al. Computation of Curves and Surfaces , 1990 .
[13] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[14] Tom Lyche,et al. Quasi-interpolation projectors for box splines , 2008 .
[15] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[16] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[17] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[18] C. Manni,et al. Geometric Construction of Generalized Cubic Splines , 2006 .
[19] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[20] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[21] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[22] Marie-Laurence Mazure,et al. Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..