Quasi-interpolation in isogeometric analysis based on generalized B-splines

Isogeometric analysis is a new method for the numerical simulation of problems governed by partial differential equations. It possesses many features in common with finite element methods (FEM) but takes some inspiration from Computer Aided Design tools. We illustrate how quasi-interpolation methods can be suitably used to set Dirichlet boundary conditions in isogeometric analysis. In particular, we focus on quasi-interpolant projectors for generalized B-splines, which have been recently proposed as a possible alternative to NURBS in isogeometric analysis.

[1]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[2]  C. D. Boor,et al.  Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .

[3]  Miljenko Marušić,et al.  Sharp error bounds for interpolating splines in tension , 1995 .

[4]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[5]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[6]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[7]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[8]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[9]  T. Lyche,et al.  Some examples of quasi-interpolants constructed from local spline projectors , 2001 .

[10]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[11]  Tom Lyche,et al.  Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.

[12]  C. Micchelli,et al.  Computation of Curves and Surfaces , 1990 .

[13]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[14]  Tom Lyche,et al.  Quasi-interpolation projectors for box splines , 2008 .

[15]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[16]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[17]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[18]  C. Manni,et al.  Geometric Construction of Generalized Cubic Splines , 2006 .

[19]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[20]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[21]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[22]  Marie-Laurence Mazure,et al.  Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..