Synchronization of dynamical systems of different orders and different dimensions

A method of tracking control is proposed to achieve synchronization between the systems of fractional order and integer order. This article presents two cases of synchronization, in first case synchronization for three dimensional integer order Cai system and a four dimensional fractional order hyperchaotic Gao system is achieved and in second case synchronization for three dimensional fractional order Newton-Leipnik system and four dimensional hyperchaotic Pang-Liu system is achieved by tracking control method. Computational results shows that the controllers designed are useful to synchronize the considered master and slave systems in both the cases. In order to execute numerical results Matlab software is used.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Bin Wang,et al.  Active Sliding Mode for Synchronization of a Wide Class of Four-Dimensional Fractional-Order Chaotic Systems , 2014 .

[3]  A. Benaissa Cherif,et al.  Asymptotic behavior of solution for a fractional Riemann-Liouville differential equations on time scales , 2017, Malaya Journal of Matematik.

[4]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[7]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[8]  Sha Wang,et al.  Hybrid projective synchronization of chaotic fractional order systems with different dimensions , 2010 .

[9]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[10]  Ivo Petráš,et al.  Chaos in the fractional-order Volta’s system: modeling and simulation , 2009 .

[11]  Chenghua Liang,et al.  A new fractional-order hyperchaotic system and its modified projective synchronization , 2015 .

[12]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[13]  Diyi Chen,et al.  Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization , 2013 .

[14]  J. A. Nanware,et al.  Initial value problems for fractional differential equations involving Riemann-Liouville derivative , 2017 .

[15]  Isabel S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[16]  王娟,et al.  Synchronization between a novel class of fractional-order and integer-order chaotic systems via a sliding mode controller , 2012 .

[17]  Guoliang Cai,et al.  Chaos Synchronization of a New Chaotic System via Nonlinear Control , 2007 .

[18]  Yuan Kang,et al.  Parametric Analysis and Impulsive Synchronization of Fractional-Order Newton-Leipnik Systems , 2009 .

[19]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[20]  Xing-yuan Wang,et al.  Dynamic analysis of the fractional-order Liu system and its synchronization. , 2007, Chaos.

[21]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[22]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[23]  Hongtao Lu,et al.  Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication , 2012 .

[24]  Yongjian Liu,et al.  A new hyperchaotic system from the Lü system and its control , 2011, J. Comput. Appl. Math..

[25]  E. Weibel,et al.  Fractals in Biology and Medicine , 1994 .

[26]  Zhou Ping,et al.  Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems) , 2010 .

[27]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[28]  Dequan Li,et al.  A novel active pinning control for synchronization and anti-synchronization of new uncertain unified chaotic systems , 2010 .

[29]  Ayub Khan,et al.  Synchronization Between a Fractional Order Chaotic System and an Integer Order Chaotic System , 2013 .

[30]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[31]  I Kanter,et al.  On chaos synchronization and secure communication , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .