Multiresolution quantum chemistry: basic theory and initial applications.

We describe a multiresolution solver for the all-electron local density approximation Kohn-Sham equations for general polyatomic molecules. The resulting solutions are obtained to a user-specified precision and the computational cost of applying all operators scales linearly with the number of parameters. The construction and use of separated forms for operators (here, the Green's functions for the Poisson and bound-state Helmholtz equations) enable practical computation in three and higher dimensions. Initial applications include the alkali-earth atoms down to strontium and the water and benzene molecules.

[1]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[2]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  David E. Bernholdt,et al.  High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .

[5]  T. A. Arias,et al.  Multiresolution analysis for efficient, high precision all-electron density-functional calculations , 2002 .

[6]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[7]  S. Goedecker,et al.  Linear scaling solution of the coulomb problem using wavelets , 1997, physics/9701024.

[8]  Bradley K. Alpert,et al.  Adaptive solution of partial di erential equations in multiwavelet bases , 2002 .

[9]  Yves Meyer,et al.  Wavelets - tools for science and technology , 1987 .

[10]  A. Thakkar,et al.  Improved Roothaan-Hartree-Fock wavefunctions for isoelectronic series of the atoms He to Ne , 1995 .

[11]  Gregory Beylkin,et al.  On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases , 1997 .

[12]  A. Becke,et al.  Numerical solution of Poisson’s equation in polyatomic molecules , 1988 .

[13]  Thomas L. Beck,et al.  Real‐space multigrid solution of electrostatics problems and the Kohn–Sham equations , 1997 .

[14]  T. Arias Multiresolution analysis of electronic structure: semicardinal and wavelet bases , 1998, cond-mat/9805262.

[15]  J. L. Kinsey,et al.  Wavelets in curvilinear coordinate quantum calculations: H2+ electronic states , 2002 .

[16]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[17]  Gregory Beylkin,et al.  A Multiresolution Approach to Regularization of Singular Operators and Fast Summation , 2002, SIAM J. Sci. Comput..

[18]  J. Fattebert,et al.  Towards grid-based OÑNÖ density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration , 2000 .

[19]  A. Becke,et al.  Local Density-Functional Polarizabilities and Hyperpolarizabilities at the Basis-Set Limit , 1996 .

[20]  Stefan Goedecker,et al.  FREQUENCY LOCALIZATION PROPERTIES OF THE DENSITY MATRIX AND ITS RESULTING HYPERSPARSITY IN A WAVELET REPRESENTATION , 1999 .

[21]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[22]  M. H. Kalos,et al.  Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei , 1962 .

[23]  Anders M. N. Niklasson,et al.  Multiresolution density-matrix approach to electronic structure calculations , 2002 .

[24]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[25]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[26]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[27]  Patrick Fischer,et al.  Numerical Solution of the Schrödinger Equation in a Wavelet Basis for Hydrogen-like Atoms , 1998 .

[28]  Cho,et al.  Wavelets in electronic structure calculations. , 1993, Physical review letters.

[29]  Axel D. Becke,et al.  Numerical solution of Schrödinger’s equation in polyatomic molecules , 1990 .

[30]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[31]  Christopher Roland,et al.  Real-space multigrid methods for large-scale electronic structure problems , 1997 .

[32]  Alan Edelman,et al.  Multiscale Computation with Interpolating Wavelets , 1998 .

[33]  Jian Wang,et al.  Efficient real-space solution of the Kohn–Sham equations with multiscale techniques , 1999, cond-mat/9905422.

[34]  B. Bursten,et al.  The LCAO representation of Xα‐SW molecular orbitals , 1977 .

[35]  Nicholas C. Handy,et al.  Plane waves and radial polynomials: a new mixed basis , 2002 .

[36]  Robert J. Harrison,et al.  Krylov subspace accelerated inexact Newton method for linear and nonlinear equations , 2004, J. Comput. Chem..

[37]  Axel D. Becke,et al.  Basis‐set‐free local density‐functional calculations of geometries of polyatomic molecules , 1993 .

[38]  George I. Fann,et al.  Wavelets for electronic structure calculations , 1997 .

[39]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  A. Mitin Exact solution of the Hartree-Fock equation for the H 2 molecule in the linear-combination-of-atomic-orbitals approximation , 2000 .

[41]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[42]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[43]  William H. Butler,et al.  Multiple scattering in solids , 1999, Graduate texts in comtemporary physics.

[44]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[45]  T A Arias,et al.  Robust ab initio calculation of condensed matter: transparent convergence through semicardinal multiresolution analysis. , 2003, Physical review letters.

[46]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[47]  Gregory Beylkin,et al.  On Generalized Gaussian Quadratures for Exponentials and Their Applications , 2002 .

[48]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[49]  Nicholas C. Handy,et al.  LONG-RANGE BEHAVIOR OF HARTREE--FOCK ORBITALS. , 1969 .