In this paper, the self inductance for long conductor with rectangular cross section is in investigated. Using three-dimensional integral Fredholm's equation of the second kind with weakly singular kernel we obtain equation for the complex voltage drop in the conductor. Self impedance appearing in the equation is expressed in the form of integral relation for any current density distribution. The imaginary part of this impedance divided by angular frequency is the self inductance of conductor of any shape and finite length. In case of direct current (DC), low frequency (LF) or thin strip long conductor of rectangular cross section the formulae for the self inductances are given for any length and for length much greater than the other dimensions. The self inductance of a thin tape is also presented. Streszczenie. W pracy badano indukcyjnośc wlasną dlugiego przewodu o przekroju prostokątnym. Stosując trojwymiarowe rownanie calkowe Fredholma drugiego rodzaju z jądrem slabo osobliwym otrzymano rownanie na zespolony spadek napiecia w przewodzie. Wystepująca w tym rownaniu impedancja wlasna jest wyrazona w postaci calkowej dla dowolnego rozkladu gestości prądu. Cześc urojona tej impedancji dzielona przez czestotliwośc kątową jest indukcyjnością wlasną przewodu o dowolnym przekroju poprzecznym i dowolnej dlugości. Wzory na indukcyjnośc wlasną dlugiego przewodu o przekroju prostokątnym i dlugości znacznie wiekszej niz jego wymiary poprzeczne podano dla przypadku prądu stalego, przemiennego o niskiej czestotliwości lub przewodu taśmowego. (Indukcyjnośc wlasna dlugiego przewodu o przekroju prostokątnym)
[1]
Albert E. Ruehli,et al.
Inductance calculations in a complex integrated circuit environment
,
1972
.
[2]
M. Kazimierczuk.
High-Frequency Magnetic Components: Kazimierczuk/High-Frequency Magnetic Components
,
2013
.
[3]
M. Bueno,et al.
A new method for inductance calculations
,
1995
.
[4]
C. Paul.
Inductance: Loop and Partial
,
2009
.
[5]
C. Hoer,et al.
Exact inductance equations for rectangular conductors with applications to more complicated geometries
,
1965
.
[6]
Self and mutual impedances of a finite length gas-insulated transmission line (GIL)
,
2007
.
[7]
A. E. Ruehii.
Inductance Calculations in a Complex Integrated Circuit Environment
,
2002
.