The Non-hydrostatic Icosahedral Atmospheric Model: description and development

This article reviews the development of a global non-hydrostatic model, focusing on the pioneering research of the Non-hydrostatic Icosahedral Atmospheric Model (NICAM). Very high resolution global atmospheric circulation simulations with horizontal mesh spacing of approximately O (km) were conducted using recently developed supercomputers. These types of simulations were conducted with a specifically designed atmospheric global model based on a quasi-uniform grid mesh structure and a non-hydrostatic equation system. This review describes the development of each dynamical and physical component of NICAM, the assimilation strategy and its related models, and provides a scientific overview of NICAM studies conducted to date.

[1]  T. Nakajima,et al.  Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model. , 2014, Environmental pollution.

[2]  Toshiki Iwasaki,et al.  A Parameterization Scheme of Orographic Gravity Wave Drag with Two Different Vertical Partitionings , 1989 .

[3]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[4]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[5]  Steven J. Woolnough,et al.  The Effects of Explicit versus Parameterized Convection on the MJO in a Large-Domain High-Resolution Tropical Case Study. Part I: Characterization of Large-Scale Organization and Propagation* , 2013 .

[6]  Mark Lawrence,et al.  On a fundamental problem in implementing flux‐form advection schemes for tracer transport in 3‐dimensional general circulation and chemistry transport models , 2001 .

[7]  G. Schmidt,et al.  Simulation of recent northern winter climate trends by greenhouse-gas forcing , 1999, Nature.

[8]  I. Roulstone,et al.  Royal Meteorological Society discussion meeting on ‘New directions in mathematical modelling in numerical weather prediction’, 16th February, 2000. , 2000 .

[9]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[10]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 2. Model results and evaluation , 2002 .

[11]  M. Satoh,et al.  Characteristics of the Kinetic Energy Spectrum of NICAM Model Atmosphere , 2009 .

[12]  D. Randall,et al.  The Tropical Marine Boundary Layer Under a Deep Convection System: a Large‐Eddy Simulation Study , 2009 .

[13]  Philip W. Jones First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates , 1999 .

[14]  Misako Kachi,et al.  Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation , 1999, Nature.

[15]  Hiroshi L. Tanaka,et al.  Applying the Local Ensemble Transform Kalman Filter to the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) , 2009 .

[16]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[17]  Yoshinobu Masuda,et al.  An Integration Scheme of the Primitive Equation Model with an Icosahedral-Hexagonal Grid System and its Application to the Shallow Water Equations , 1986 .

[18]  丹羽 洋介 Numerical study on atmospheric transport and surface source/sink of carbon dioxide , 2010 .

[19]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[20]  T. Nasuno Equatorial Mean Zonal Wind in a Global Nonhydrostatic Aquaplanet Experiment( The International Workshop on High-Resolution and Cloud Modeling, 2006) , 2008 .

[21]  S. Klein,et al.  Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model , 1999 .

[22]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[23]  Hiroaki Miura,et al.  Multiscale Organization of Convection Simulated with Explicit Cloud Processes on an Aquaplanet , 2007 .

[24]  M. Satoh,et al.  Evaluation of Precipitating Hydrometeor Parameterizations in a Single-Moment Bulk Microphysics Scheme for Deep Convective Systems over the Tropical Central Pacific , 2014 .

[25]  Hiromasa Yoshimura,et al.  Development of the Simple Coupler “ Scup ” for Earth System Modeling , 2008 .

[26]  M. Satoh,et al.  Resolution Dependency of the Diurnal Cycle of Convective Clouds over the Tibetan Plateau in a Mesoscale Model( The International Workshop on High-Resolution and Cloud Modeling, 2006) , 2008 .

[27]  Hirohiko Masunaga,et al.  A joint satellite and global cloud‐resolving model analysis of a Madden‐Julian Oscillation event: Model diagnosis , 2008 .

[28]  Joseph B. Klemp,et al.  A Terrain-Following Coordinate with Smoothed Coordinate Surfaces , 2011 .

[29]  D. Randall,et al.  Large‐Eddy Simulation of Maritime Deep Tropical Convection , 2009 .

[30]  Nils Wedi,et al.  A framework for testing global non‐hydrostatic models , 2009 .

[31]  Ian G. Enting,et al.  Inverse problems in atmospheric constituent transport , 2002 .

[32]  T. Nakajima,et al.  Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core , 2014 .

[33]  Hiroaki Miura,et al.  Global cloud‐system‐resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones , 2008 .

[34]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions , 1974 .

[35]  Y. Takayabu,et al.  Afternoon Precipitation Peak Simulated in an Aqua-Planet Global Non-hydrostatic Model (Aqua-Planet-NICAM) , 2013 .

[36]  Hisashi Nakamura,et al.  10-km Mesh Meso-scale Resolving Simulations of the Global Atmosphere on the Earth Simulator - Preliminary Outcomes of AFES (AGCM for the Earth Simulator) - , 2004 .

[37]  Masaki Satoh Conservative Scheme for a Compressible Nonhydrostatic Model with Moist Processes , 2003 .

[38]  Jürgen Steppeler,et al.  Nonhydrostatic Atmospheric Modeling using az-Coordinate Representation , 2002 .

[39]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[40]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[41]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[42]  Paul N. Swarztrauber Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .

[43]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[44]  David A. Randall,et al.  Global Atmospheric Modeling Using a Geodesic Grid with an Isentropic Vertical Coordinate , 2000 .

[45]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[46]  Jeffrey S. Scroggs,et al.  A global nonhydrostatic semi-Lagrangian atmospheric model without orography , 1995 .

[47]  Akira Noda,et al.  20-km-Mesh Global Climate Simulations Using JMA-GSM Model —Mean Climate States— , 2006 .

[48]  Jean Côté,et al.  The CMC-MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation , 2002 .

[49]  Ryoichi Imasu,et al.  A Three-Dimensional Icosahedral Grid Advection Scheme Preserving Monotonicity and Consistency with C , 2011 .

[50]  T. Nakajima,et al.  Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation , 2012 .

[51]  Takemasa Miyoshi,et al.  The Local Ensemble Transform Kalman Filter with the Weather Research and Forecasting Model: Experiments with Real Observations , 2012, Pure and Applied Geophysics.

[52]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[53]  Shamil Maksyutov,et al.  Three-dimensional variations of atmospheric CO 2 : aircraft measurements and multi-transport model simulations , 2011 .

[54]  Y. Tsushima,et al.  Sensitivity of Hadley Circulation to Physical Parameters and Resolution through Changing Upper-Tropospheric Ice Clouds Using a Global Cloud-System Resolving Model , 2011 .

[55]  Takemasa Miyoshi,et al.  Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution , 2007 .

[56]  S. Kobayashi,et al.  The JRA-25 Reanalysis , 2007 .

[57]  Masaki Satoh,et al.  Atmospheric Circulation Dynamics and General Circulation Models , 2013 .

[58]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part IV: Sensitivity Experiments , 2006 .

[59]  William M. Putman,et al.  Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5) , 2011 .

[60]  Tsuyoshi Yamaura,et al.  Possible Impact of a Tropical Cyclone on the Northward Migration of the Baiu Frontal Zone , 2013 .

[61]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[62]  Axel Seifert,et al.  On the Parameterization of Evaporation of Raindrops as Simulated by a One-Dimensional Rainshaft Model , 2008 .

[63]  Hirofumi Tomita,et al.  Shallow water model on a modified icosahedral geodesic grid by using spring dynamics , 2001 .

[64]  M. Satoh,et al.  An Accurate Semi-Lagrangian Scheme for Raindrop Sedimentation , 2003 .

[65]  Masaki Satoh,et al.  Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme , 2002 .

[66]  Masaki Satoh,et al.  On the Warm Core of a Tropical Cyclone Formed near the Tropopause , 2015 .

[67]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[68]  Hiroaki Miura,et al.  Comparison of high-level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations , 2010 .

[69]  Richard Neale,et al.  A standard test for AGCMs including their physical parametrizations: I: the proposal , 2000 .

[70]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[71]  Shin-ichi Iga,et al.  Mountain-Wave-Like Spurious Waves Associated with Simulated Cold Fronts due to Inconsistencies between Horizontal and Vertical Resolutions , 2007 .

[72]  M. Satoh,et al.  Environmental Conditions for Tropical Cyclogenesis Associated with African Easterly Waves , 2013 .

[73]  J. Steppeler,et al.  Prediction of Clouds and Rain Using a z-Coordinate Nonhydrostatic Model , 2006 .

[74]  Masaki Satoh,et al.  Ensemble Simulation of Cyclone Nargis by a Global Cloud-System-Resolving Model—Modulation of Cyclogenesis by the Madden-Julian Oscillation , 2010 .

[75]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[76]  M. Satoh,et al.  Statistical Relation between Maximum Vertical Velocity and Surface Precipitation of Tropical Convect , 2011 .

[77]  Hirofumi Tomita,et al.  New Microphysical Schemes with Five and Six Categories by Diagnostic Generation of Cloud Ice , 2008 .

[78]  誠史 行本,et al.  地球システムモデルのためのシンプルなカップラー「Scup」の開発 , 2008 .

[79]  K. Emanuel Tropical Cyclone Activity Downscaled from NOAA‐CIRES Reanalysis, 1908–1958 , 2010 .

[80]  David M. Winker,et al.  Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties , 2011 .

[81]  Hiroaki Miura,et al.  An Upwind-Biased Transport Scheme Using a Quadratic Reconstruction on Spherical Icosahedral Grids , 2013 .

[82]  M. Satoh,et al.  An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators , 2012 .

[83]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[84]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[85]  K. Sudo,et al.  Global source attribution of tropospheric ozone: Long-range transport from various source regions , 2007 .

[86]  H. Taniguchi,et al.  Seasonal and Intraseasonal Modulation of Tropical Cyclogenesis Environment over the Bay of Bengal during the Extended Summer Monsoon , 2012 .

[87]  P. R. Julian,et al.  Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period , 1972 .

[88]  Bin Wang,et al.  Asian summer monsoon simulated by a global cloud‐system‐resolving model: Diurnal to intra‐seasonal variability , 2009 .

[89]  M. Satoh,et al.  Response of Ice and Liquid Water Paths of Tropical Cyclones to Global Warming Simulated by a Global Nonhydrostatic Model with Explicit Cloud Microphysics , 2013 .

[90]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[91]  Charles N. Long,et al.  Tracking Pulses of the Madden–Julian Oscillation , 2013 .

[92]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[93]  B. Holben,et al.  Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model , 2002 .

[94]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[95]  M. Satoh,et al.  Excitation of Deep Convection to the North of Tropical Storm Bebinca (2006) , 2014 .

[96]  Teruyuki Nakajima,et al.  A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model , 2008 .

[97]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[98]  Hiroaki Miura,et al.  Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators , 2010 .

[99]  Joseph B. Klemp,et al.  Behavior of flow over step orography , 2000 .

[100]  Kaoru Sato,et al.  Universal Frequency Spectra of Surface Meteorological Fluctuations , 2011 .

[101]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[102]  D. Goto Modeling of black carbon in Asia using a global-to-regional seamless aerosol-transport model. , 2014, Environmental pollution.

[103]  S. Kato,et al.  Vertical structure of ice cloud layers from CloudSat and CALIPSO measurements and comparison to NICAM simulations , 2013 .

[104]  Hiroaki Miura,et al.  A Madden-Julian Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model , 2007, Science.

[105]  Hirofumi Tomita,et al.  A Stretched Icosahedral Grid by a New Grid Transformation , 2008 .

[106]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[107]  Hiroaki Miura,et al.  Spring diurnal cycle of clouds over Tibetan Plateau: Global cloud‐resolving simulations and satellite observations , 2007 .

[108]  Tetsuo Nakazawa,et al.  Tropical Super Clusters within Intraseasonal Variations over the Western Pacific , 1988 .

[109]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[110]  A. Hill,et al.  Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework , 2012 .

[111]  Masaki Satoh,et al.  The Genesis of Tropical Cyclone Nargis (2008): Environmental Modulation and Numerical Predictability , 2010 .

[112]  R. Charlson,et al.  Simulating Global Clouds: Past, Present, and Future , 2009 .

[113]  Y. Sawa,et al.  Evaluation of atmospheric CO2 measurements from new flask air sampling of JAL airliner observations , 2008 .

[114]  Mats Hamrud,et al.  Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration , 2013 .

[115]  H. Hasumi,et al.  CCSR Ocean Component Model (COCO), version 2.1 , 2000 .

[116]  Philip M. Benson,et al.  Laboratory simulations of fluid/gas induced micro-earthquakes: application to volcano seismology , 2014, Front. Earth Sci..

[117]  R. Heikes,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .

[118]  Robert A. Houze,et al.  Clouds in Tropical Cyclones , 2010 .

[119]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 1. Model description , 2002 .

[120]  Hiroaki Miura,et al.  Development of a global cloud resolving model - a multi-scale structure of tropical convections - , 2005 .

[121]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .

[122]  Takashi Nakajima,et al.  Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results , 2010 .

[123]  Hajime Okamoto,et al.  Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO , 2013 .

[124]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[125]  Y. Tsushima,et al.  Climatology of a nonhydrostatic global model with explicit cloud processes , 2007 .

[126]  L. Donner,et al.  Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics , 2007 .

[127]  Tomoe Nasuno,et al.  Properties of Precipitation and In-Cloud Vertical Motion in a Global Nonhydrostatic Aquaplanet Experiment , 2011 .

[128]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[129]  K. Emanuel,et al.  Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High‐Resolution Global Climate Model , 2010 .

[130]  Yoshi-Yuki Hayashi,et al.  The 30-40 Day Oscillations Simulated in an "Aqua Planet" Model , 1986 .

[131]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[132]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[133]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[134]  T. Nakajima,et al.  Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan , 2014 .

[135]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[136]  J. Kondo A new bucket model for predicting water content in the surface soil layer , 1993 .

[137]  Why do Super Clusters and Madden Julian Oscillation Exist over the Equatorial Region , 2012 .

[138]  Nils Wedi,et al.  Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization , 2012, Climate Dynamics.

[139]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog , 2006 .

[140]  James F. Doyle,et al.  The Spectral Element Method , 2020, Wave Propagation in Structures.

[141]  A. Stohl,et al.  Space-based evaluation of interactions between aerosols and low-level Arctic clouds during the Spring and Summer of 2008 , 2011 .

[142]  Hiroaki Miura,et al.  Characteristics of Cloud Size of Deep Convection Simulated by a Global Cloud Resolving Model over the Western Tropical Pacific( The International Workshop on High-Resolution and Cloud Modeling, 2006) , 2008 .

[143]  H. Tomita,et al.  A short‐duration global cloud‐resolving simulation with a realistic land and sea distribution , 2007 .

[144]  Teruyuki Nakajima,et al.  Aerosol Effects of the Condensation Process on a Convective Cloud Simulation , 2014 .

[145]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[146]  Hidekazu Matsueda,et al.  Aircraft observation of the seasonal variation in the transport of CO2 in the upper atmosphere , 2012 .

[147]  Hiroaki Miura,et al.  A climate sensitivity test using a global cloud resolving model under an aqua planet condition , 2005 .

[148]  Hirofumi Tomita,et al.  A new dynamical framework of nonhydrostatic global model using the icosahedral grid , 2004 .

[149]  Hirofumi Tomita,et al.  Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer , 2014, Nature Communications.

[150]  M. Satoh,et al.  Continual influences of tropical waves on the genesis and rapid intensification of Typhoon Durian (2006) , 2010 .

[151]  A PDF-based hybrid prognostic cloud scheme for general circulation models , 2009 .

[152]  M. Satoh,et al.  Impact of the sea surface temperature rise on storm‐track clouds in global nonhydrostatic aqua planet simulations , 2014 .

[153]  Y. Tsushima,et al.  Relative humidity changes in a warmer climate , 2010 .

[154]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[155]  B. Stevens,et al.  Simulations of marine stratocumulus using a new microphysical parameterization scheme , 1998 .

[156]  Shin-ichi Iga Smooth, seamless, and structured grid generation with flexibility in resolution distribution on a sphere based on conformal mapping and the spring dynamics method , 2015, J. Comput. Phys..

[157]  Fuyuki Saito,et al.  Data exchange algorithm and software design of KAKUSHIN coupler Jcup , 2011, ICCS.

[158]  Y. Tsushima,et al.  Modeling of the radiative process in an atmospheric general circulation model. , 2000, Applied optics.

[159]  Shin-ichi Iga,et al.  High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes , 2014 .

[160]  K. Emanuel,et al.  An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Nonhydrostatic Axisymmetric Numerical Model , 1987 .

[161]  G. R. Stuhne,et al.  Vortex Erosion and Amalgamation in a New Model of Large Scale Flow on the Sphere , 1996 .

[162]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[163]  M. Satoh,et al.  Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): Aqua planet experiments , 2010 .

[164]  W. Grabowski Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: A Simple Cloud Microphysics Parameterization , 1998 .

[165]  Kumiko Takata,et al.  Development of the minimal advanced treatments of surface interaction and runoff , 2003 .

[166]  T. Takemura,et al.  Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations , 2011 .

[167]  Bin Wang,et al.  Differences of Boreal Summer Intraseasonal Oscillations Simulated in an Atmosphere–Ocean Coupled Model and an Atmosphere-Only Model* , 2004 .

[168]  R. Vautard,et al.  TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002 , 2008, Global Biogeochemical Cycles.

[169]  Alexander Khain,et al.  A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics , 2006 .

[170]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[171]  W. Cotton,et al.  New RAMS cloud microphysics parameterization part I: the single-moment scheme , 1995 .

[172]  John H. Seinfeld,et al.  Global secondary organic aerosol from isoprene oxidation , 2006 .

[173]  M. Satoh,et al.  Predictability Aspects of Global Aqua-planet Simulations with Explicit Convection , 2008 .

[174]  Shin-ichi Iga,et al.  Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes , 2012 .

[175]  Nils Wedi,et al.  High-Resolution Global Climate Simulations with the ECMWF Model in Project Athena: Experimental Design, Model Climate, and Seasonal Forecast Skill , 2012 .

[176]  Todd D. Ringler,et al.  Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores , 2000 .

[177]  Takemasa Miyoshi,et al.  Applying a Four-dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM) , 2006 .

[178]  Dimitri Komatitsch,et al.  The spectral-element method in seismology , 2013 .

[179]  K. Sudo,et al.  The relative importance of various source regions on East Asian surface ozone , 2010 .

[180]  H. Miura An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal–Pentagonal Grids , 2007 .

[181]  David A. Randall,et al.  Geostrophic Adjustment and the Finite-Difference Shallow-Water Equations , 1994 .

[182]  M. Blackburn,et al.  The Aqua-Planet Experiment (APE): CONTROL SST Simulation , 2013, Journal of the Meteorological Society of Japan. Ser. II.

[183]  Hiroaki Miura,et al.  Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model , 2009 .

[184]  M. Fujita,et al.  Diurnal Convection Peaks over the Eastern Indian Ocean off Sumatra during Different MJO Phases , 2011 .

[185]  Hajime Okamoto,et al.  Global three‐dimensional simulation of aerosol optical thickness distribution of various origins , 2000 .

[186]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[187]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[188]  A. Pokrovsky,et al.  Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification , 2008 .

[189]  H. Tomita,et al.  Quantitative Assessment of Diurnal Variation of Tropical Convection Simulated by a Global Nonhydrostatic Model without Cumulus Parameterization , 2012 .

[190]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[191]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[192]  Hiroaki Miura,et al.  A Simulated Preconditioning of Typhoon Genesis Controlled by a Boreal Summer Madden-Julian Oscillation Event in a Global Cloud-system-resolving Model , 2009 .

[193]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[194]  Rodel D. Lasco,et al.  The carbon budget of South Asia , 2012 .

[195]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[196]  Hiroaki Miura,et al.  Spontaneous onset of a Madden‐Julian oscillation event in a cloud‐system‐resolving simulation , 2009 .

[197]  Yuqing Wang,et al.  Multiscale Interactions in the Life Cycle of a Tropical Cyclone Simulated in a Global Cloud-System-Resolving Model. Part II: System-Scale and Mesoscale Processes , 2010 .

[198]  H. Tomita,et al.  Convectively Coupled Equatorial Waves Simulated on an Aquaplanet in a Global Nonhydrostatic Experiment , 2008 .

[199]  D. Randall,et al.  A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid , 2002 .

[200]  Song-You Hong,et al.  Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models , 2010 .

[201]  Masaki Satoh,et al.  Scalable rank-mapping algorithm for an icosahedral grid system on the massive parallel computer with a 3-D torus network , 2014, Parallel Comput..

[202]  T. Iwasaki,et al.  A parameterization scheme of orographic gravity wave drag with two different vertical partitionings, Part 2 : Zonally averaged budget analyses based on transformed Eulerian mean method , 1989 .

[203]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[204]  M. Satoh,et al.  Eastward-Propagating Property of Large-Scale Precipitation Systems Simulated in the Coarse-Resolution NICAM and an Explanation of its Appearance , 2012 .

[205]  H. Yashiro,et al.  Deep moist atmospheric convection in a subkilometer global simulation , 2013 .

[206]  J. McGregor,et al.  Semi-Lagrangian Advection on Conformal-Cubic Grids , 1996 .

[207]  H. Yamazaki,et al.  Vertically combined shaved cell method in a z‐coordinate nonhydrostatic atmospheric model , 2008 .

[208]  Bin Wang,et al.  Formation of Tropical Cyclones in the Northern Indian Ocean Associated with Two Types of Tropical Intraseasonal Oscillation Modes , 2010 .

[209]  Hyeong-Bin Cheong A dynamical core with double fourier series : Comparison with the spherical harmonics method , 2006 .

[210]  N. Wedi,et al.  Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[211]  Toshihiko Takemura,et al.  A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum , 2009 .

[212]  Hiroaki Miura,et al.  Convective Momentum Transport by Rainbands within a Madden-Julian Oscillation in a Global Nonhydrostatic Model with Explicit Deep Convective Processes. Part I: Methodology and General Results , 2012 .

[213]  Hirofumi Tomita,et al.  Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method , 2014, J. Comput. Phys..

[214]  Takashi Nakajima,et al.  Droplet Growth in Warm Water Clouds Observed by the A-Train. Part I: Sensitivity Analysis of the MODIS-Derived Cloud Droplet Sizes , 2010 .

[215]  Toshinobu Machida,et al.  Worldwide Measurements of Atmospheric CO2 and Other Trace Gas Species Using Commercial Airlines , 2008 .

[216]  W. Collins,et al.  Simulating Global Clouds , 2009 .

[217]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[218]  Ping Liu,et al.  An MJO Simulated by the NICAM at 14- and 7-km Resolutions , 2009 .

[219]  Trevor Davies,et al.  An Overview of Numerical Methods for the Next Generation U.K. NWP and Climate Model , 1997 .

[220]  Tomoe Nasuno,et al.  The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models , 2012, Climate Dynamics.

[221]  Michael Buchhold,et al.  The Operational Global Icosahedral-Hexagonal Gridpoint Model GME: Description and High-Resolution Tests , 2002 .

[222]  R. McTaggart-Cowan,et al.  Sedimentation-Induced Errors in Bulk Microphysics Schemes , 2010 .

[223]  A. Arakawa The Cumulus Parameterization Problem: Past, Present, and Future , 2004 .

[224]  Hiroaki Miura,et al.  An Upwind-Biased Conservative Transport Scheme for Multistage Temporal Integrations on Spherical Icosahedral Grids , 2013 .

[225]  David A. Randall,et al.  Optimized Icosahedral Grids: Performance of Finite-Difference Operators and Multigrid Solver , 2013 .

[226]  H. Ritzdorf,et al.  Geoscientific Model Development OASIS 4 – a coupling software for next generation earth system modelling , 2009 .

[227]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[228]  M. Satoh,et al.  Numerical Examination of the Diurnal Variation of Summer Precipitation over Southern China , 2013 .

[229]  William C. Skamarock,et al.  Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..

[230]  Masaki Satoh,et al.  A New Approach to Atmospheric General Circulation Model: Global Cloud Resolving Model NICAM and its Computational Performance , 2008, SIAM J. Sci. Comput..

[231]  Ryoichi Imasu,et al.  Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements , 2011 .

[232]  A. Seifert,et al.  Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description , 2001 .

[233]  Y. Masumoto,et al.  MISMO FIELD EXPERIMENT IN THE EQUATORIAL INDIAN OCEAN , 2008 .

[234]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[235]  Takehiko Satomura,et al.  Nonhydrostatic Atmospheric Modeling Using a Combined Cartesian Grid , 2010 .

[236]  A hypothesis and a case-study projection of an influence of MJO modulation on boreal-summer tropical cyclogenesis in a warmer climate with a global non-hydrostatic model: a transition toward the central Pacific? , 2014, Front. Earth Sci..

[237]  T. Takemura,et al.  A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model , 2011 .

[238]  H. Niino,et al.  Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer , 2009 .

[239]  T. Takemura,et al.  Global cloud‐system‐resolving simulation of aerosol effect on warm clouds , 2008 .

[240]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[241]  Nicholas C. Parazoo,et al.  TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic‐scale variations for the period 2002–2003 , 2008 .

[242]  H. Tomita,et al.  Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations , 2010 .

[243]  Luca Bonaventura,et al.  A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .

[244]  John M. Haynes,et al.  COSP: Satellite simulation software for model assessment , 2011 .

[245]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[246]  T. Nakajima,et al.  Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations , 2014 .

[247]  René Laprise,et al.  Regional climate modelling , 2008, J. Comput. Phys..

[248]  J. Wyngaard Toward Numerical Modeling in the “Terra Incognita” , 2004 .

[249]  H. Tomita,et al.  A global cloud‐resolving simulation: Preliminary results from an aqua planet experiment , 2005 .

[250]  Hirofumi Tomita,et al.  Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud‐system‐resolving approach , 2010 .

[251]  H. Ritzdorf,et al.  OASIS4 – a coupling software for next generation earth system modelling , 2009 .

[252]  M. Satoh,et al.  Multi-scale Organization of Convection in a Global Numerical Simulation of the December 2006 MJO Event Using Explicit Moist Processes , 2009 .

[253]  Luca Bonaventura,et al.  Consistency with continuity in conservative advection schemes for free‐surface models , 2002 .

[254]  E. Kalnay,et al.  Effective assimilation of global precipitation: simulation experiments , 2013 .

[255]  M. Satoh,et al.  Statistics on High-Cloud Areas and Their Sensitivities to Cloud Microphysics Using Single-Cloud Experiments , 2009 .

[256]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[257]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[258]  Hirofumi Tomita,et al.  An optimization of the Icosahedral grid modified by spring dynamics , 2002 .

[259]  M. Yamamoto,et al.  Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): 2. An experiment under the atmospheric conditions of December 2006 to January 2007 , 2012 .

[260]  Slobodan Nickovic,et al.  Geostrophic Adjustment on Hexagonal Grids , 2002 .

[261]  Andrew Staniforth,et al.  Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model , 2008, J. Comput. Phys..

[262]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[263]  Yuqing Wang,et al.  Multiscale Interactions in the Life Cycle of a Tropical Cyclone Simulated in a Global Cloud-System-Resolving Model. Part I: Large-Scale and Storm-Scale Evolutions* , 2010 .

[264]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[265]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[266]  Forecast Skill of Madden-Julian Oscillation Events in a Global Nonhydrostatic Model during the CINDY2011/DYNAMO Observation Period , 2013 .

[267]  S. Satheesh Atmospheric chemistry and climate , 2012 .

[268]  Mark Pinsky,et al.  Notes on the state-of-the-art numerical modeling of cloud microphysics , 2000 .