Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose

It has been shown previously that externally added glycine betaine is accumulated in Escherichia coli in response to the external osmotic strength. Here we have shown, by using nuclear magnetic resonance spectroscopy and radiochemical methods, that E. coli growing in a glucose-mineral medium of elevated osmotic strength generated with NaCl, had the same capacity to accumulate proline betaine and glycine betaine. Its capacity to accumulate γ-butyrobetaine was, however, 40 to 50% lower. Accordingly, externally added proline betaine and glycine betaine stimulated aerobic growth of osmotically stressed cells equally well, and they were more osmoprotective than γ-butyrobetaine. In cells grown at an osmotic strength of 0.64, 1.01, or 1.47 osmolal, respectively, the molal cytoplasmic concentration of the two former betaines corresponded to 29, 38, or 58% of the external osmotic strength. Nuclear magnetic resonance spectroscopy revealed that trehalose and glutamic acid were the only species of organic osmolytes accumulated in significant amounts in cells grown under osmotic stress in glucosemineral medium without betaines. Their combined molal concentration in the cytoplasm of cells grown at 1.01 osmolal corresponded to 27% of the external osmotic strength.

[1]  D. Moore,et al.  Organic solute accumulation in osmotically stressed cyanobacteria , 1986 .

[2]  A. Elbein,et al.  Properties of a Trehalose Phosphate Synthetase from Mycobacterium smegmatis ACTIVATION OF THE ENZYME BY POLYNUCLEOTIDES AND OTHER POLYANIONS , 1971 .

[3]  T. Bernard,et al.  Osmoregulation in Klebsiella pneumoniae: enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, gamma-butyrobetaine, and other related compounds. , 1984, Canadian journal of microbiology.

[4]  W. Epstein Osmoregulation by potassium transport in Escherichia coli , 1986 .

[5]  C. Knowles,et al.  Osmotically induced volume and turbidity changes of Escherichia coli due to salts, sucrose and glycerol, with particular reference to the rapid permeation of glycerol into the cell. , 1974, Journal of general microbiology.

[6]  D. Tempest,et al.  Influence of environment on the content and composition of microbial free amino acid pools. , 1970, Journal of general microbiology.

[7]  L. Csonka Proline over-production results in enhanced osmotolerance in Salmonella typhimurium , 2004, Molecular and General Genetics MGG.

[8]  P. J. Phipps,et al.  Chapter III Chemical Analysis of Microbial Cells , 1971 .

[9]  M. Eshoo,et al.  Selection, mapping, and characterization of osmoregulatory mutants of Escherichia coli blocked in the choline-glycine betaine pathway , 1986, Journal of bacteriology.

[10]  J. Crowe,et al.  Preservation of Membranes in Anhydrobiotic Organisms: The Role of Trehalose , 1984, Science.

[11]  L. Andersson,et al.  Preparation of 3-Carboxy-N,N,N-trimethylpropanaminium Chloride (γ-Butyrobetaine Hydrochloride) , 1981 .

[12]  W. Epstein,et al.  Osmotic control of kdp operon expression in Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Ackermann,et al.  Über das Vorkommen von Betainen in der Archenmuschel. , 1933 .

[14]  G. Jung,et al.  Anwendung der 13C‐Resonanz auf stereochemische Probleme bei Kohlenhydraten , 1971 .

[15]  S. Roller,et al.  Accumulation of carbohydrate by Escherichia coli B/r/1 during growth at low water activity. , 1982, The Journal of applied bacteriology.

[16]  R. Britten,et al.  The amino acid pool in Escherichia coli. , 1962, Bacteriological reviews.

[17]  J. Cairney,et al.  Osmoregulation of Gene Expression in Salmonella typhimurium: proU Encodes an Osmotically Induced Betaine Transport System , 1986, Journal of bacteriology.

[18]  J. Cairney,et al.  Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine , 1985, Journal of bacteriology.

[19]  P. Falkenberg,et al.  Genetics of osmoregulation in Escherichia coli: Uptake and biosynthesis of organic osmolytes , 1986 .

[20]  W. Voelter,et al.  13C-NMR-Studien von geschützten Aminosäuren , 1974 .

[21]  A. Strøm,et al.  Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli , 1986, Journal of bacteriology.

[22]  Raymond S. Norton,et al.  Organic Osmoregulatory Solutes in Cyanobacteria , 1984 .

[23]  P. Mitchell Transport of phosphate across the surface of Micrococcus pyogenes; nature of the cell inorganic phosphate. , 1953, Journal of general microbiology.

[24]  D. Tavernier,et al.  Sugars , 1910, Glasgow medical journal.

[25]  S. Schultz,et al.  Cation Transport in Escherichia coli , 1965, The Journal of general physiology.

[26]  H. G. Trüper,et al.  1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. , 1985, European journal of biochemistry.

[27]  J. Gowrishankar,et al.  proP-mediated proline transport also plays a role in Escherichia coli osmoregulation , 1986, Journal of bacteriology.

[28]  A. L. Koch Shrinkage of growing Escherichia coli cells by osmotic challenge , 1984, Journal of Bacteriology.

[29]  R. Reed,et al.  Carbohydrate Accumulation and Osmotic Stress in Cyanobacteria , 1984 .

[30]  L. Maréchal Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium , 2004, Archives of Microbiology.

[31]  R. Valentine,et al.  Genetic engineering in agriculture: osmoregulation , 1982 .

[32]  S. Roseman,et al.  Periplasmic space in Salmonella typhimurium and Escherichia coli. , 1977, The Journal of biological chemistry.

[33]  J. Seakins,et al.  CHAPTER 9 – SUGARS , 1976 .

[34]  A. Dandekar,et al.  Molecular Biology of Osmoregulation , 1984, Science.

[35]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[36]  M. Martín,et al.  Role of trehalose in the spores of Streptomyces. , 1986 .

[37]  D. le Rudulier,et al.  Glycine betaine transport in Escherichia coli: osmotic modulation , 1985, Journal of bacteriology.

[38]  G. Fodor,et al.  Stickstoff‐Stereochemie quartärer Pyrrolidiniumsalze , 1970 .