Functional Characterization of Intrinsic and Extrinsic Geometry

We propose a novel way to capture and characterize distortion between pairs of shapes by extending the recently proposed framework of shape differences built on functional maps. We modify the original definition of shape differences slightly and prove that after this change, the discrete metric is fully encoded in two shape difference operators and can be recovered by solving two linear systems of equations. Then we introduce an extension of the shape difference operators using offset surfaces to capture extrinsic or embedding-dependent distortion, complementing the purely intrinsic nature of the original shape differences. Finally, we demonstrate that a set of four

[1]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[2]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[3]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[4]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[5]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[6]  Andrew O. Sageman-Furnas,et al.  A discrete parametrized surface theory in R^3 , 2014, 1412.7293.

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  Davide Eynard,et al.  Shape‐from‐Operator: Recovering Shapes from Intrinsic Operators , 2015, Comput. Graph. Forum.

[9]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[10]  Mathieu Desbrun,et al.  Weighted Triangulations for Geometry Processing , 2014, ACM Trans. Graph..

[11]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[12]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[13]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[14]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[15]  Bor Plestenjak,et al.  ON THE SINGULAR TWO-PARAMETER EIGENVALUE PROBLEM ∗ , 2009 .

[16]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[17]  Yaron Lipman,et al.  Exact Recovery with Symmetries for Procrustes Matching , 2016, SIAM J. Optim..

[18]  Hayong Shin,et al.  Self-intersection Removal in Triangular Mesh Offsetting , 2003 .

[19]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[20]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[21]  Xavier Bresson,et al.  Functional correspondence by matrix completion , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Wei Zeng,et al.  Discrete heat kernel determines discrete Riemannian metric , 2012, Graph. Model..

[23]  Y. Wang,et al.  Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes , 2012, Comput. Graph. Forum.

[24]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[25]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[26]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[27]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[28]  Maks Ovsjanikov,et al.  Supervised Descriptor Learning for Non-Rigid Shape Matching , 2014, ECCV Workshops.

[29]  Maks Ovsjanikov,et al.  Continuous Matching via Vector Field Flow , 2015, SGP '15.

[30]  Leonidas J. Guibas,et al.  Consistent Shape Maps via Semidefinite Programming , 2013, SGP '13.

[31]  Craig Gotsman,et al.  Spatial deformation transfer , 2009, SCA '09.

[32]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[33]  J. Leeuw Applications of Convex Analysis to Multidimensional Scaling , 2000 .

[34]  Michael Wimmer,et al.  Reduced-order shape optimization using offset surfaces , 2015, ACM Trans. Graph..