Tungsten–Tantalum Alloys for Fusion Reactor Applications

[1]  M. Rieth,et al.  Neutron irradiation tolerance of potassium-doped and rhenium-alloyed tungsten , 2021 .

[2]  E. Jimenez-Melero,et al.  In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800°C , 2021, Journal of Nuclear Materials.

[3]  Tao Zhang,et al.  Ductile to brittle transition temperature of advanced tungsten alloys for nuclear fusion applications deduced by miniaturized three-point bending tests , 2021 .

[4]  M. Wirtz,et al.  Thermal shock behavior under deuterium plasma exposure of tungsten–tantalum alloys , 2021, Physica Scripta.

[5]  M. Rieth,et al.  Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan , 2021 .

[6]  Y. Katoh,et al.  Tensile properties of powder-metallurgical-processed tungsten alloys after neutron irradiation near recrystallization temperatures , 2020 .

[7]  M. Rieth,et al.  Tungsten modified by potassium doping and rhenium addition for fusion reactor applications , 2020 .

[8]  Y. Katoh,et al.  Neutron irradiation effects on the mechanical properties of powder metallurgical processed tungsten alloys , 2020 .

[9]  G. Pintsuk,et al.  Thermal shock behavior of potassium doped and rhenium added tungsten alloys , 2020, Physica Scripta.

[10]  R. Harrison,et al.  Void evolution in tungsten and tungsten-5wt.% tantalum under in-situ proton irradiation at 800 and 1000 °C , 2019 .

[11]  M. Rieth,et al.  Tensile and impact properties of tungsten-rhenium alloy for plasma-facing components in fusion reactor , 2019, Fusion Engineering and Design.

[12]  T. Tanaka,et al.  Response of unalloyed tungsten to mixed spectrum neutrons , 2019, Journal of Nuclear Materials.

[13]  M. Rieth,et al.  Improvement of impact properties of tungsten by potassium doping , 2019, Fusion Engineering and Design.

[14]  Y. Katoh,et al.  Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum , 2019, Acta Materialia.

[15]  M. Rieth,et al.  A review of impact properties of tungsten materials , 2018, Fusion Engineering and Design.

[16]  Teruya Tanaka,et al.  Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys , 2018, Journal of Nuclear Materials.

[17]  A. Hasegawa,et al.  Thermal properties of pure tungsten and its alloys for fusion applications , 2018, Fusion Engineering and Design.

[18]  A. Hoffmann,et al.  The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to − 65 °C , 2018 .

[19]  A. Hasegawa,et al.  Solid state diffusion bonding of doped tungsten alloys with different thermo-mechanical properties , 2017, Fusion Engineering and Design.

[20]  R. Harrison,et al.  Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage , 2017 .

[21]  R. Harrison,et al.  Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalum , 2017 .

[22]  S. Nogami,et al.  Improved structural strength and lifetime of monoblock divertor targets by using doped tungsten alloys under cyclic high heat flux loading , 2017 .

[23]  A. Hasegawa,et al.  Feasibility of Utilizing Tungsten Rod for Fusion Reactor Divertor , 2017 .

[24]  Y. Katoh,et al.  Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum , 2017 .

[25]  Reinhard Pippan,et al.  Development of advanced high heat flux and plasma-facing materials , 2017 .

[26]  G. Smith,et al.  Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study , 2017 .

[27]  M. Rieth,et al.  Effect of neutron irradiation on the microstructure of tungsten , 2016 .

[28]  T. Muroga,et al.  Strain rate dependence of tensile properties of tungsten alloys for plasma-facing components in fusion reactors , 2016 .

[29]  A. Hasegawa,et al.  Effect of microstructural anisotropy on the mechanical properties of K-doped tungsten rods for plasma facing components , 2016 .

[30]  A. Hasegawa,et al.  Tensile and fatigue properties of potassium doped and rhenium containing tungsten rods for fusion reactor applications , 2016 .

[31]  B. Wirth,et al.  Irradiation hardening of pure tungsten exposed to neutron irradiation , 2016 .

[32]  C. S. Liu,et al.  Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure , 2016 .

[33]  Makoto Fukuda,et al.  Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten , 2016 .

[34]  T. Muroga,et al.  Analysis of the temperature and thermal stress in pure tungsten monoblock during heat loading and the influences of alloying and dispersion strengthening on these responses , 2016 .

[35]  X. P. Wang,et al.  Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W-0.5wt.% TaC alloys , 2016 .

[36]  Makoto Fukuda,et al.  Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys , 2016 .

[37]  B. Wirth,et al.  Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation , 2016 .

[38]  X. P. Wang,et al.  Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature , 2015, Scientific Reports.

[39]  T. Muroga,et al.  Anisotropy in the Mechanical Properties of Potassium and Rhenium Doped Tungsten Alloy Plates for Fusion Reactor Applications , 2015 .

[40]  P. Edmondson,et al.  Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations , 2015 .

[41]  A. Hasegawa,et al.  Effects of temperature and strain rate on the tensile properties of potassium-doped tungsten , 2015 .

[42]  Teruya Tanaka,et al.  Microstructural development of tungsten and tungsten–rhenium alloys due to neutron irradiation in HFIR , 2014 .

[43]  T. Muroga,et al.  Tensile properties of K-doped W–3%Re , 2014 .

[44]  A. Hasegawa,et al.  Neutron irradiation effects on tungsten materials , 2014 .

[45]  D. Rupp,et al.  Fracture behaviour of polycrystalline tungsten , 2014 .

[46]  M. Rieth,et al.  Charpy impact properties of pure tungsten plate material in as-received and recrystallized condition (1 h at 2000 °C (2273 K)) , 2013 .

[47]  D. Armstrong,et al.  Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium , 2013 .

[48]  Takahiro Ito,et al.  Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models , 2012 .

[49]  A. Hasegawa,et al.  Effects of Re Content and Fabrication Process on Microstructural Changes and Hardening in Neutron Irradiated Tungsten , 2012 .

[50]  Klaus Schmid,et al.  Comparison of hydrogen retention in W and W/Ta alloys , 2012 .

[51]  M. Rieth,et al.  The Impact of Refractory Material Properties on the Helium Cooled Divertor Design , 2012 .

[52]  C. Ambrosch-Draxl,et al.  Dislocation-core symmetry and slip planes in tungsten alloys: Ab initio calculations and microcantilever bending experiments , 2012 .

[53]  A. Wilkinson,et al.  Mechanical properties of ion-implanted tungsten–5 wt% tantalum , 2011 .

[54]  A. Hasegawa,et al.  Property change mechanism in tungsten under neutron irradiation in various reactors , 2011 .

[55]  D. Rupp,et al.  Loading rate dependence of the fracture toughness of polycrystalline tungsten , 2011 .

[56]  B. Gludovatz,et al.  Fracture behaviour of tungsten–vanadium and tungsten–tantalum alloys and composites , 2011 .

[57]  P. Schade 100 years of doped tungsten wire , 2010 .

[58]  Michael Rieth,et al.  Influence of microstructure and notch fabrication on impact bending properties of tungsten materials , 2010 .

[59]  D. Rupp,et al.  Fracture toughness and microstructural characterization of polycrystalline rolled tungsten , 2010 .

[60]  B. Gludovatz,et al.  Fracture Toughness of Polycrystalline Tungsten Alloys , 2010 .

[61]  M. Rieth,et al.  Tungsten as a Structural Divertor Material , 2010 .

[62]  D. Rupp,et al.  Anisotropic fracture behaviour and brittle-to-ductile transition of polycrystalline tungsten , 2010 .

[63]  C. Ambrosch-Draxl,et al.  Effect of rhenium on the dislocation core structure in tungsten. , 2010, Physical review letters.

[64]  Masayoshi Kawai,et al.  Development of re-crystallized W–1.1%TiC with enhanced room-temperature ductility and radiation performance , 2010 .

[65]  T. Leonhardt Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide , 2009 .

[66]  D. Rupp,et al.  Experimental investigation of the fracture toughness of polycrystalline tungsten in the brittle and semi-brittle regime , 2009 .

[67]  M. Fujiwara,et al.  Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten , 2009 .

[68]  M. Rieth,et al.  Impact Bending Tests on Selected Refractory Materials , 2008 .

[69]  M. Fujiwara,et al.  Precipitation of Solid Transmutation Elements in Irradiated Tungsten Alloys , 2008 .

[70]  Q. Wei,et al.  Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten , 2008 .

[71]  M. Fujiwara,et al.  Effects of Transmutation Elements on Neutron Irradiation Hardening of Tungsten , 2007 .

[72]  R. Pippan,et al.  Fracture toughness investigations of tungsten alloys and SPD tungsten alloys , 2007 .

[73]  A. Giannattasio,et al.  Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten , 2007 .

[74]  Stephen Roberts,et al.  An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials , 2007 .

[75]  P. Gumbsch Brittle fracture and the brittle-to-ductile transition of tungsten , 2003 .

[76]  P. Makarov,et al.  Development of tungsten-based vacuum melted and powder structural alloys , 2002 .

[77]  M. Mabuchi,et al.  Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3 , 1997 .

[78]  Yasuo Yamada,et al.  Tensile properties at elevated temperature of W-1%La2O3 , 1996 .

[79]  K. Ichikawa,et al.  Effect of rhenium addition on fracture toughness of tungsten at elevated temperatures , 1995, Journal of Materials Science.

[80]  I. Gorynin,et al.  Effects of neutron irradiation on properties of refractory metals , 1992 .

[81]  K. Shin,et al.  Solution softening mechanism of iridium and rhenium in tungsten at room temperature , 1991 .

[82]  K. Shin,et al.  High-temperature properties of particle-strengthened W-Re , 1990 .

[83]  P. Maziasz,et al.  Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application , 1990 .

[84]  T. Noda,et al.  Materials selection for reduced activation of fusion reactors , 1988 .

[85]  E. I. Uskov,et al.  High-temperature embrittlement of tungsten , 1983 .

[86]  A. Babak Effect of recrystallization on the fracture toughness of tungsten , 1983 .

[87]  A. Babak Evaluating the crack resistance of tungsten at high temperatures , 1982 .

[88]  E. I. Uskov,et al.  Recrystallization and embrittlement of sintered tungsten , 1982 .

[89]  D. B. Snow The recrystallization of commercially pure and doped tungsten wire drawn to high strain , 1979 .

[90]  P. Wright The high temperature creep behavior of doped tungsten wire , 1978 .

[91]  J. Steichen Tensile properties of neutron irradiated TZM and tungsten , 1976 .

[92]  J. Sprague,et al.  Suppression of void nucleation by a vacancy trapping mechanism , 1973 .

[93]  J. Pugh On the short time creep rupture , 1973 .

[94]  M. Ashby A first report on deformation-mechanism maps , 1972 .

[95]  J. Moteff,et al.  Comparison of microstructure with mechanical properties of irradiated tungsten , 1967 .

[96]  J. Stiegler,et al.  RECRYSTALLIZATION, GRAIN GROWTH, AND THE DUCTILE--BRITTLE TRANSITION IN TUNGSTEN SHEET. , 1967 .

[97]  Robert D. Cowan,et al.  Pulse Method of Measuring Thermal Diffusivity at High Temperatures , 1961 .

[98]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .