Modeling and Simulation of Thin Sheet Blanking using damage and rupture criteria

Because of the trend in the industry to smaller sheet thickness and higher stroke rates, modeling of blanking requires the development of advanced material models. Large plastic strain, high strain rate effects, adiabatic heating and the associated temperature effects, as well as damage and rupture have to be taken into account. In this study, two material models are considered: a physically based model for plasticity (MTS model) combined with a Nucleation And Growth (NAG) model for damage and failure and a phenomenological model for both plasticity and failure (Johnson and Cook, 1985). Finite Element predictions with both models are compared with experimental results and discussed. RESUME. La tendance actuelle dans l'industrie conduit a decouper des toles de plus en plus minces, a des cadences de plus en plus elevees. Ceci requiert le developpement de modeles avances, capables de prendre en compte les effets des grandes deformations, des grandes vitesses de deformation et de l'endommagement jusqu'a rupture. Adiabaticite et effets de temperature associes sont aussi a prendre en compte. Dans cette contribution, nous considerons deux modeles : un modele mecanistique de plasticite, le modele MTS, combine a un modele de nucleation et croissance de cavites (modele NAG) d'une part et le modele phenomenologique de Johnson-Cook (Johnson et Cook, 1985) d'autre part. Les resultats de simulations numeriques de la decoupe utilisant ces deux modeles sont compares avec l'experience et discutes.

[1]  Nadia Bahlouli,et al.  Modeling of Thin Sheet Blanking with a Micromechanical Approach Application of the MTS Model , 2002 .

[2]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[3]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[4]  K. P. Rao,et al.  Role of strain-hardening laws in the prediction of forming limit curves , 1997 .

[5]  S. Ahzi,et al.  A physically based model for dynamic failure in ductile metals , 2005 .

[6]  A. N. Stroh A theory of the fracture of metals , 1957 .

[7]  David K. Aspinwall,et al.  Modelling of hard part machining , 2002 .

[8]  Houman Borouchaki,et al.  Adaptive remeshing for ductile fracture prediction in metal forming , 2002 .

[9]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[10]  Jacques Besson,et al.  Plastic potentials for anisotropic porous solids , 2001 .

[11]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[12]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[13]  S. R. S. Kalpakjian Manufacturing Processes for Engineering Materials , 1984 .

[14]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[15]  S. Ahzi,et al.  A unified approach for pressure and temperature effects in dynamic failure criteria , 2001 .

[16]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[17]  Ridha Hambli,et al.  Comparison between Lemaitre and Gurson damage models in crack growth simulation during blanking process , 2001 .

[18]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[19]  Nicola Bonora,et al.  A nonlinear CDM model for ductile failure , 1997 .

[20]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[21]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[22]  Numerical Simulation of Sheet Metal Blanking Process using a Coupled Finite Elastoplastic Damage Modelling , 2003 .