Dynamical behavior of reaction-diffusion neural networks and their synchronization arising in modeling epileptic seizure: A numerical simulation study

Abstract Excessive synchronizations of neurons in the brain networks can be a reason for some episodic disorders such as epilepsy. In this paper, we simulate neural dynamic models and their synchronizations numerically by a new numerical algorithm. In order to overcome the complexity of the problem, a suitable combination of the Legendre spectral element method and operator splitting technique is proposed to convert a complex system of partial differential equations into sparse linear algebraic systems. The simulations are explored in different aspects such as accuracy, computing the wavefront and angular speeds, computing time, the condition number of obtained algebraic systems to demonstrate the proposed scheme effectiveness. The numerical simulations and comparisons confirm the method is suitable in terms of accuracy and speed.

[1]  M. M. Moayeri,et al.  Numerical study of a multidimensional dynamic quantum model arising in cognitive psychology especially in decision making , 2019, The European Physical Journal Plus.

[2]  Mehdi Dehghan,et al.  Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation , 2016 .

[3]  John N. Shadid,et al.  Stability of operator splitting methods for systems with indefinite operators: Advection-diffusion-reaction systems , 2009, J. Comput. Phys..

[4]  S. Abbasbandy Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method , 2008 .

[5]  Abdul-Majid Wazwaz,et al.  The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations , 2007, Appl. Math. Comput..

[6]  M. Aziz-Alaoui,et al.  Large time behaviour and synchronization of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type , 2019, IMA Journal of Applied Mathematics.

[7]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.

[8]  A. Hodgkin,et al.  The components of membrane conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[9]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[10]  Bernie D. Shizgal,et al.  Pseudospectral method of solution of the Fitzhugh-Nagumo equation , 2009, Math. Comput. Simul..

[11]  George Em Karniadakis,et al.  Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[12]  George Em Karniadakis,et al.  Mixed spectral/hp element formulation for nonlinear elasticity , 2012 .

[13]  Andrés Arrarás,et al.  Improved accuracy for time-splitting methods for the numerical solution of parabolic equations , 2015, Appl. Math. Comput..

[14]  M. Dehghan,et al.  Mixed two‐grid finite difference methods for solving one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations , 2017 .

[15]  Shahriar Gharibzadeh,et al.  The effect of network structure on desynchronization dynamics , 2018, Commun. Nonlinear Sci. Numer. Simul..

[16]  S. Blanes,et al.  High-order splitting methods for separable non-autonomous parabolic equations , 2013, 1311.1023.

[17]  Mehdi Dehghan,et al.  A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements , 2012 .

[18]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[19]  Qingqu Zhuang,et al.  Legendre-Galerkin spectral-element method for the biharmonic equations and its applications , 2017, Comput. Math. Appl..

[20]  M. Dehghan,et al.  Pseudospectral methods for Nagumo equation , 2011 .

[21]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[22]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[23]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[24]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[25]  Shahriar Gharibzadeh,et al.  The role of driver nodes in managing epileptic seizures: Application of Kuramoto model. , 2017, Journal of theoretical biology.

[26]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[27]  Jamal Amani Rad,et al.  Numerical simulation of reaction-diffusion neural dynamics models and their synchronization/desynchronization: Application to epileptic seizures , 2019, Comput. Math. Appl..

[28]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[29]  Mehdi Dehghan,et al.  Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis , 2017 .

[30]  M. Dehghan,et al.  Modal spectral element method in curvilinear domains , 2018, Applied Numerical Mathematics.

[31]  M. Moradipour,et al.  Using spectral element method to solve variational inequalities with applications in finance , 2015 .

[32]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[33]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[34]  George E. Karniadakis,et al.  A hybrid spectral/DG method for solving the phase-averaged ocean wave equation: Algorithm and validation , 2012, J. Comput. Phys..

[35]  M. A. Aziz-Alaoui,et al.  Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type , 2012, Comput. Math. Appl..

[36]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[37]  A. H. Hadian-Rasanan,et al.  A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation , 2020 .

[38]  Mehdi Dehghan,et al.  A hk mortar spectral element method for the p-Laplacian equation , 2018, Comput. Math. Appl..

[39]  Mehdi Dehghan,et al.  Alternating direction implicit-spectral element method (ADI-SEM) for solving multi-dimensional generalized modified anomalous sub-diffusion equation , 2019, Comput. Math. Appl..

[40]  M. Dehghan,et al.  A spectral element method using the modal basis and its application in solving second‐order nonlinear partial differential equations , 2015 .

[41]  John N. Shadid,et al.  Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems , 2005 .

[42]  Andreas Hellander,et al.  Local error estimates for adaptive simulation of the reaction-diffusion master equation via operator splitting , 2013, J. Comput. Phys..

[43]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[44]  Mehdi Dehghan,et al.  An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point , 2015, Comput. Math. Appl..

[45]  Keum Shik Hong,et al.  Robust Adaptive Synchronization of Ring Configured Uncertain Chaotic FitzHugh–Nagumo Neurons under Direction-Dependent Coupling , 2018, Front. Neurorobot..

[46]  Mostafa Abbaszadeh,et al.  An upwind local radial basis functions-differential quadrature (RBFs-DQ) technique to simulate some models arising in water sciences , 2020 .

[47]  Saeed Kazem,et al.  Numerical solution of fractional differential equations with a Tau method based on Legendre and Bernstein polynomials , 2014 .

[48]  Mostafa Abbaszadeh,et al.  The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations , 2017, Alexandria Engineering Journal.

[49]  W. Lytton Computer modelling of epilepsy , 2008, Nature Reviews Neuroscience.

[50]  Mostafa Abbaszadeh,et al.  Analysis of a Legendre spectral element method (LSEM) for the two-dimensional system of a nonlinear stochastic advection-reaction-diffusion models , 2019, 1904.06263.

[51]  Mehdi Dehghan,et al.  A Legendre spectral element method on a large spatial domain to solve the predator–prey system modeling interacting populations , 2013 .

[52]  H. Holden,et al.  Splitting methods for partial differential equations with rough solutions : analysis and MATLAB programs , 2010 .

[53]  George Em Karniadakis,et al.  A Petrov–Galerkin spectral element method for fractional elliptic problems , 2016, 1610.08608.

[54]  Isaías Alonso-Mallo,et al.  Avoiding order reduction when integrating reaction-diffusion boundary value problems with exponential splitting methods , 2019, J. Comput. Appl. Math..

[55]  June-Yub Lee,et al.  A second order operator splitting method for Allen–Cahn type equations with nonlinear source terms , 2015 .

[56]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[57]  George E. Karniadakis,et al.  Exponentially accurate spectral and spectral element methods for fractional ODEs , 2014, J. Comput. Phys..

[58]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[59]  T. Womelsdorf,et al.  The role of neuronal synchronization in selective attention , 2007, Current Opinion in Neurobiology.

[60]  M. Aziz-Alaoui,et al.  Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type , 2018 .

[61]  Ansgar Jüngel,et al.  Time-dependent simulations of quantum waveguides using a time-splitting spectral method , 2010, Math. Comput. Simul..

[62]  Jie Shen,et al.  A New Spectral Element Method for Pricing European Options Under the Black–Scholes and Merton Jump Diffusion Models , 2011, J. Sci. Comput..

[63]  Wotao Yin,et al.  Splitting Methods in Communication, Imaging, Science, and Engineering , 2017 .

[64]  C. Pozrikidis,et al.  Introduction to finite and spectral element methods using MATLAB , 2014 .

[65]  Hester Bijl,et al.  Fourth-Order Runge–Kutta Schemes for Fluid Mechanics Applications , 2005, J. Sci. Comput..

[66]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[67]  Turgut Özis,et al.  Numerical solution of the Burgers' equation with high order splitting methods , 2014, 1410.4419.

[68]  Robert Michael Kirby,et al.  High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: Application to cardiac electrophysiology , 2014, J. Comput. Phys..

[69]  Luca Vincenzo Ballestra,et al.  The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach , 2010, Comput. Math. Appl..

[70]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .