Angle-resolved photoemission study of the lightly doped cuprates Bi2212

[1]  Z. Hussain,et al.  Metallic behavior of lightly doped La2-xSrxCuO4 with a Fermi surface forming an arc. , 2003, Physical review letters.

[2]  T. Tohyama,et al.  Doping dependence of chemical potential and entropy in hole- and electron-doped high- T c cuprates , 2002, cond-mat/0211073.

[3]  A. Fujimori,et al.  Chemical potential shift in lightly-doped to overdoped Bi$_2$Sr$_2$Ca$_{1-x}${\it R}$_{x}$Cu$_2$O$_{8+y}$ ({\it R} = Pr, Er) , 2002, cond-mat/0203154.

[4]  O. K. Andersen,et al.  Band-structure trend in hole-doped cuprates and correlation with T(c max). , 2000, Physical review letters.

[5]  M. Randeria,et al.  Electronic Spectra and Their Relation to the ( π,π) Collective Mode in High- Tc Superconductors , 1999, cond-mat/9906335.

[6]  I. Terasaki,et al.  Anisotropic resistivity of the antiferromagnetic insulator , 1999, cond-mat/9903023.

[7]  Shen,et al.  Photoemission evidence for a remnant fermi surface and a d-wave-like dispersion in insulating Ca2CuO2Cl2 , 1998, Science.

[8]  M. Kastner,et al.  Systematics of the Photoemission Spectral Function of Cuprates: Insulators and Hole- and Electron-Doped Superconductors , 1998 .

[9]  Raimondi,et al.  Effective single-band models for the high-Tc cuprates. II. Role of apical oxygen. , 1996, Physical review. B, Condensed matter.

[10]  Ohta,et al.  Apex oxygen and critical temperature in copper oxide superconductors: Universal correlation with the stability of local singlets. , 1991, Physical review. B, Condensed matter.