Thermal‐Oxidative Growth of Substoichiometric WO3–x Nanowires at Mild Conditions

Herein, the growth of substoichiometric tungsten oxide (WO3–x) nanowires (NWs) via thermal oxidation of W films (a few 10 to a few 100 nm thick) deposited by Ar‐plasma sputtering on fluorine‐doped tin oxide (FTO) substrates is reported. A thermal treatment at relatively low temperature (525–550 °C) in Ar at atmospheric pressure leads to the conversion of the W films into W suboxide (WO3–x) NW arrays. Such NWs have a length of ≈500 nm and their diameter ranges from 10 to 40 nm depending on the duration of the annealing process. These growth conditions for the formation of WO3–x NWs are significantly milder and more straightforward than those reported in previous literature. This avoids high temperatures (e.g., above 600 °C), vacuum conditions, or the addition of catalysts. A thermal‐oxidative approach of these sputtered films is suitable to directly form WO3–x NWs on various surfaces, including conductive substrates to fabricate photoelectrodes or large‐scale supports, e.g., for smart windows.

[1]  P. Schmuki,et al.  A Dewetted‐Dealloyed Nanoporous Pt Co‐Catalyst Formed on TiO2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H2 Production , 2019, Chemistry, an Asian journal.

[2]  Hao Wang,et al.  Nonstoichiometric tungsten oxide: structure, synthesis, and applications , 2019, Journal of Materials Science: Materials in Electronics.

[3]  Zhanhu Guo,et al.  Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. , 2019, Nanoscale.

[4]  P. Schmuki,et al.  Photocatalytic reduction and scavenging of Hg(II) over templated-dewetted Au on TiO_2 nanotubes , 2019, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[5]  Chang‐Mou Wu,et al.  Recent Advances in Tungsten-Oxide-Based Materials and Their Applications , 2019, Front. Mater..

[6]  P. Shirage,et al.  Surface Oxygen Vacancy Formulated Energy Storage Application: Pseudocapacitor-Battery Trait of W18O49 Nanorods , 2019, Journal of The Electrochemical Society.

[7]  P. Schmuki,et al.  Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst , 2018, Applied Catalysis B: Environmental.

[8]  ειδικούς στόχους,et al.  (2016) , 2018 .

[9]  C. Bagnall,et al.  Oxidation Behavior of Tungsten Carbide-6% Cobalt Cemented Carbide , 2018, Metallography, Microstructure, and Analysis.

[10]  S. Chandra,et al.  Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application , 2018, Materials Science in Semiconductor Processing.

[11]  N. Wang,et al.  In situ investigations of the phase change behaviour of tungsten oxide nanostructures , 2018, Royal Society Open Science.

[12]  P. Schmuki,et al.  A Cocatalytic Electron‐Transfer Cascade Site‐Selectively Placed on TiO2 Nanotubes Yields Enhanced Photocatalytic H2 Evolution , 2018 .

[13]  C. Pan,et al.  Study on comparing WO3 and W18O49 gas sensing abilities under NO2 environment , 2017 .

[14]  P. Schmuki,et al.  On the Supercapacitive Behaviour of Anodic Porous WO3-Based Negative Electrodes , 2017 .

[15]  Qinfang Zhang,et al.  Enhanced reversible lithium storage in ultrathin W18O49 nanowires entwined Si composite anode , 2017 .

[16]  M. Hu,et al.  Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor , 2016 .

[17]  E. Llobet,et al.  Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes , 2016 .

[18]  Xiaoyun Qin,et al.  Morphology-controlled synthesis of WO2.72 nanostructures and their photocatalytic properties , 2016 .

[19]  Yang Liu,et al.  Thermal-oxidative growth of aligned W18O49 nanowire arrays for high performance gas sensor , 2016 .

[20]  M. Hon,et al.  A complementary electrochromic device based on W18O49 nanowire arrays and Prussian blue thin films , 2016 .

[21]  Xiaobo Chen,et al.  Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties , 2015 .

[22]  L. Nasi,et al.  Tungsten oxide nanowires grown on amorphous-like tungsten films , 2015, Nanotechnology.

[23]  Chang Woo Kim,et al.  Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications , 2015 .

[24]  Abbas Amini,et al.  Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil , 2015 .

[25]  P. Schmuki,et al.  Molten o-H3PO4: A New Electrolyte for the Anodic Synthesis of Self-Organized Oxide Structures--WO3 Nanochannel Layers and Others. , 2015, Journal of the American Chemical Society.

[26]  Giorgio Sberveglieri,et al.  Tungsten oxide nanowires for chemical detection , 2015 .

[27]  T. Yew,et al.  Non-stoichiometric W(18)O(49-x)S(x) nanowires for wide spectrum photosensors with high internal gain. , 2015, Nanoscale.

[28]  S. Aloni,et al.  A planar-defect-driven growth mechanism of oxygen deficient tungsten oxide nanowires , 2014 .

[29]  Shu-Hong Yu,et al.  Ultrathin W18O49 nanowire assemblies for electrochromic devices. , 2013, Nano letters.

[30]  P. Schmuki,et al.  Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. , 2013, Angewandte Chemie.

[31]  Nguyen Duc Hoa,et al.  A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor application , 2012 .

[32]  P. Pérez,et al.  On the oxidation mechanism of pure tungsten in the temperature range 600-800 C , 2012 .

[33]  Y. Xing,et al.  Direct growth of tungsten oxide nanorods from heated tungsten foils , 2012 .

[34]  S. Yin,et al.  Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[35]  Arnan Mitchell,et al.  Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications , 2011 .

[36]  G. Sberveglieri,et al.  Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles , 2011 .

[37]  Zhong Lin Wang,et al.  Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode , 2010, Advanced materials.

[38]  M. Nakao,et al.  Field emission properties of discretely synthesized tungsten oxide nanowires , 2010 .

[39]  A. W. Hassel,et al.  Single tungsten nanowires as pH sensitive electrodes , 2008 .

[40]  Kunquan Hong,et al.  Synthesizing tungsten oxide nanowires by a thermal evaporation method , 2007 .

[41]  Do Kyung Kim,et al.  Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet , 2005 .

[42]  Y. Bando,et al.  Synthesis of tungsten oxide nanowires , 2003 .

[43]  C. Wang,et al.  A Simple Method for the Synthesis of Highly Oriented Potassium‐Doped Tungsten Oxide Nanowires , 2003 .

[44]  Jie Liu,et al.  Tungsten Oxide Nanowires on Tungsten Substrates , 2002 .

[45]  C. Sénémaud,et al.  Chemical vapor deposition of tungsten oxides: A comparative study by X-ray photoelectron spectroscopy, X-ray diffraction and reflection high energy electron diffraction , 1984 .