On programs for prime length FFTs and circular convolution
暂无分享,去创建一个
[1] C. Rader. Discrete Fourier transforms when the number of data samples is prime , 1968 .
[2] R. Tolimieri,et al. The tensor product: a mathematical programming language for FFTs and other fast DSP operations , 1992, IEEE Signal Processing Magazine.
[3] C. Sidney Burrus,et al. Extending Winograd's small convolution algorithm to longer lengths , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.
[4] R. Stasinski. Easy generation of small-Ndiscrete Fourier transform algorithms , 1986 .
[5] Chao Lu,et al. FFT algorithms for prime transform sizes and their implementations on VAX, IBM3090VF, and IBM RS/6000 , 1993, IEEE Trans. Signal Process..
[6] C. Sidney Burrus,et al. On the structure of efficient DFT algorithms , 1985, IEEE Trans. Acoust. Speech Signal Process..
[7] H. Nussbaumer,et al. Fast polynomial transform algorithms for digital convolution , 1980 .
[8] S. Winograd. Arithmetic complexity of computations , 1980 .
[9] K. J. Jones. Prime number DFT computation via parallel circular convolvers , 1990 .
[10] J. Cooley,et al. New algorithms for digital convolution , 1977 .
[11] C. Temperton. A new set of minimum-add small- n rotated DFT modules , 1988 .
[12] C. S. Burrus,et al. Automating the design of prime length FFT programs , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.