Flow-firing processes

We consider a discrete non-deterministic flow-firing process for rerouting flow on the edges of a planar complex. The process is an instance of higher-dimensional chip-firing. In the flow-firing process, flow on the edges of a complex is repeatedly diverted across the faces of the complex. For non-conservative initial configurations we show this process never terminates. For conservative initial flows we show the process terminates after a finite number of rerouting steps, but there are many possible final configurations reachable from a single initial state. Finally, for conservative initial flows around a topological hole we show the process terminates at a unique final configuration. In this case the process exhibits global confluence despite not satisfying local confluence.

[1]  Y. Peres,et al.  Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile , 2007, 0704.0688.

[2]  Bernhard Korte,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[3]  Guglielmo Paoletti,et al.  Deterministic Abelian Sandpile Models and Patterns , 2013 .

[4]  S. M. García,et al.  2014: , 2020, A Party for Lazarus.

[5]  Wesley Pegden,et al.  Convergence of the Abelian sandpile , 2011, 1105.0111.

[6]  Sam Hopkins,et al.  Sorting via Chip-Firing , 2017, Electron. J. Comb..

[7]  Charles K. Smart,et al.  The Apollonian structure of integer superharmonic matrices , 2013, 1309.3267.

[8]  Art M. Duval,et al.  Critical Groups of Simplicial Complexes , 2011, Annals of Combinatorics.

[9]  Dominique Rossin,et al.  Bidimensionnal sand pile and ice pile models , 2006 .

[10]  Eric Goles Ch.,et al.  Games on Line Graphs and Sand Piles , 1993, Theor. Comput. Sci..

[11]  J. Spencer,et al.  Disks, balls, and walls: analysis of a combinatorial game , 1989 .

[12]  Caroline J. Klivans The Mathematics of Chip-firing , 2018 .

[13]  Joel H. Spencer,et al.  Balancing vectors in the max norm , 1986, Comb..

[14]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[15]  A. Postnikov,et al.  Root system chip-firing I: interval-firing , 2017, Mathematische Zeitschrift.

[16]  A. Postnikov,et al.  Root System Chip-Firing II: Central-Firing , 2017, International Mathematics Research Notices.

[17]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[18]  Yvan Le Borgne,et al.  On the identity of the sandpile group , 2002, Discret. Math..