Brauer Algebras and Centralizer Algebras for SO(2n, C)

Abstract In 1937, Richard Brauer identified the centralizer algebra of transformations commuting with the action of the complex special orthogonal groups SO (2 n ). Corresponding to the centralizer algebra E k (2 n ) =  End SO (2 n ) ( V  ⊗  k ) for V  =  C 2 n is a set of diagrams. To each diagram d , Brauer associated a linear transformation Φ( d ) in E k (2 n ) and showed that E k (2 n ) is spanned by the transformations Φ( d ). In this paper, we first define a product on D k (2 n ), the C -linear span of the diagrams. Under this product, D k (2 n ) becomes an algebra, and Φ extends to an algebra epimorphism. Since D k (2 n ) is not associative, we denote by D k (2n) its largest associative quotient. We then show that when k  ≤ 2 n , the semisimple quotient of D k (2n) is equal to E k (2 n ). Next, we prove some facts about the representation theory of E k (2 n ). We compute the dimensions of the irreducible E k (2 n )-modules and give some branching rules.

[1]  Joan S. Birman,et al.  Braids, link polynomials and a new algebra , 1989 .

[2]  Itaru Terada,et al.  Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn , 1987 .

[3]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[4]  Eigenvalues connected with Brauer's centralizer algebras , 1989 .

[5]  J. Murakami The Kauffman polynomial of links and representation theory , 1990 .

[6]  P. Hanlon,et al.  Computing the discriminants of Brauer’s centralizer algebras , 1990 .

[7]  Hans Wenzl,et al.  On the structure of Brauer’s centralizer algebras , 1988 .

[8]  Richard Brauer,et al.  Theory of group characters , 1979 .

[9]  Phil Hanlon,et al.  On the decomposition of Brauer's centralizer algebras , 1989 .

[10]  W. P. Brown An algebra related to the orthogonal group. , 1955 .

[11]  Arun Ram,et al.  Characters of Brauer's centralizer algebras. , 1995 .

[12]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[13]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[14]  W. P. Brown The Semisimplicity of ω n f , 1956 .

[15]  I. Schur,et al.  Ueber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen , 1901 .

[16]  Phil Hanlon,et al.  A Tower Construction for the Radical in Brauer′s Centralizer Algebras , 1994 .

[17]  J. Murakami The representations of the q -analogue of Brauer's centralizer algebras and the Kauffman polynomial of links , 1990 .

[18]  J. Wedderburn Note on Algebras , 1937 .

[19]  Richard Brauer,et al.  On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .

[20]  Hermann Boerner,et al.  Über die rationalen Darstellungen der allgemeinen linearen Gruppe , 1948 .