Electrochemical performances of solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anode materials

[1]  Q. Ma,et al.  Y-substituted SrTiO3–YSZ composites as anode materials for solid oxide fuel cells: Interaction between SYT and YSZ , 2010 .

[2]  E. Ivers-Tiffée,et al.  Degradation Effects of Ni Patterned Anodes in H2/H2O Atmosphere , 2009 .

[3]  A. Nakajo,et al.  RedOx study of anode-supported solid oxide fuel cell , 2009 .

[4]  V. Birss,et al.  Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells , 2009 .

[5]  Manoj Pillai,et al.  Fuel-flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support , 2008 .

[6]  F. Tietz,et al.  Ceramic‐based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells , 2008 .

[7]  J. Vohs,et al.  SOFC Anodes Based on LST–YSZ Composites and on Y0.04Ce0.48Zr0.48O2 , 2008 .

[8]  F. Tietz,et al.  An efficient ceramic-based anode for solid oxide fuel cells , 2007 .

[9]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[10]  Liming Yang,et al.  Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells , 2007 .

[11]  John T. S. Irvine,et al.  An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites , 2005 .

[12]  Rolf W. Steinbrech,et al.  Reduction and re-oxidation of anodes for solid oxide fuel cells , 2005 .

[13]  F. Tietz,et al.  Statistical design of experiments for evaluation of Y–Zr–Ti oxides as anode materials in solid oxide fuel cells , 2004 .

[14]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[15]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[16]  Ellen Ivers-Tiffée,et al.  Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes , 2002 .

[17]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[18]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[19]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[20]  Antonia Moropoulou,et al.  Oxidation and Resulting Mechanical Properties of Ni/8Y_2O_3-stabilized Zirconia Anode Substrate for Solid-oxide Fuel Cells , 2002 .

[21]  J. R. Jurado,et al.  Structure, Microstructure, and Mixed Conduction of [(ZrO2)0.92(Y2O3)0.08]0.9(TiO2)0.1 , 2002 .

[22]  A. Petric,et al.  Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions , 2002 .

[23]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[24]  D. Stöver,et al.  Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix® process , 1999 .

[25]  Caine M. Finnerty,et al.  Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane , 1998 .

[26]  S. Jiang,et al.  Hydrogen Oxidation at the Nickel and Platinum Electrodes on Yttria‐Tetragonal Zirconia Electrolyte , 1997 .

[27]  Kevin Kendall,et al.  The reduction of nickelzirconia cermet anodes and the effects on supported thin electrolytes , 1996 .

[28]  Andrew Dicks,et al.  Hydrogen generation from natural gas for the fuel cell systems of tomorrow , 1996 .

[29]  T. Takagi,et al.  Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2H2O atmospheres , 1994 .