Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter.

We report on the excitation of propagating surface plasmon polaritons in thin metal films by a single emitter. Upon excitation in the visible regime, individual semiconducting single-walled carbon nanotubes are shown to act as directional near-infrared point dipole sources launching propagating surface plasmons mainly along the direction of the nanotube axis. Plasmon excitation and propagation is monitored in Fourier and real space by leakage radiation microscopy and is modeled by rigorous theoretical calculations. Coupling to plasmons almost completely reshapes the emission of nanotubes both spatially and with respect to polarization as compared to photoluminescence on a dielectric substrate.

[1]  W. Knoll,et al.  Fluorescence intensities of chromophores in front of a thin metal film. , 2004, The Journal of chemical physics.

[2]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[3]  Thomas R Huser,et al.  Plasmon optics of structured silver films , 2001 .

[4]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[5]  J. Lakowicz,et al.  Surface-plasmon-coupled emission of quantum dots. , 2005, The journal of physical chemistry. B.

[6]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[7]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[8]  Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. , 2004, Analytical chemistry.

[9]  G. Wiederrecht,et al.  Surface plasmon interference excited by tightly focused laser beams. , 2007, Optics letters.

[10]  Novotny,et al.  Local Excitation, Scattering, and Interference of Surface Plasmons. , 1996, Physical review letters.

[11]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[12]  F. Hennrich,et al.  Enhancing and redirecting carbon nanotube photoluminescence by an optical antenna. , 2010, Optics express.

[13]  L. M. Walpita,et al.  Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix , 1985 .

[14]  A. Bouhelier,et al.  Integrated plasmonic waveguides: A mode solver based on density of states formulation , 2009 .

[15]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[16]  D. Koller,et al.  Leakage radiation microscopy of surface plasmon polaritons , 2008, 1002.0725.

[17]  Joseph R Lakowicz,et al.  Radiative decay engineering 3. Surface plasmon-coupled directional emission. , 2004, Analytical biochemistry.

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  Phaedon Avouris,et al.  Mobile ambipolar domain in carbon-nanotube infrared emitters. , 2004, Physical review letters.

[20]  Colin J R Sheppard,et al.  Investigation of the point spread function of surface plasmon-coupled emission microscopy. , 2007, Optics express.

[21]  J. Lakowicz,et al.  Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. , 2008, The Analyst.

[22]  Jonathan Grandidier,et al.  Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. , 2009, Nano letters.

[23]  Bernhard Lamprecht,et al.  Fluorescence imaging of surface plasmon fields , 2002 .

[24]  Harald Ditlbacher,et al.  Dielectric optical elements for surface plasmons. , 2005, Optics letters.

[25]  Jean-Jacques Greffet,et al.  Surface plasmon Fourier optics , 2009, 0902.1926.

[26]  X. Yuan,et al.  Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules. , 2010, Optics express.