Level‐set topology optimization with many linear buckling constraints using an efficient and robust eigensolver

Linear buckling c onstraints are important in structural topology optimization for obtaining designs that can support the required loads without failure. During the optimization process, the critical buckling eigenmode can change; this poses a challenge to gradient-based optimization and can require the computation of a large number of linear buckling eigenmodes. This is potentially both computationally difficult to achieve and pro- hibitively expensive. In this paper, we motivate the need for a large number of linear buckling modes and show how several features of the block Jacobi conjugate gradient (BJCG) eigenvalue method, including opti- mal shift estimates, the reuse of eigenvectors, adaptive eigenvector tolerances and multiple shifts, can be used to efficiently and robustly compute a large number of buckling eigenmodes. This paper also introduces linear buckling constraints for level-set topology optimization. In our approach, the velocity function is defined as a weighted sum of the shape sensitivities for the objective and constraint functions. The weights are found by solving an optimization sub-problem to reduce the mass while maintaining feasibility of the buckling constraints. The effectiveness of this approach in combination with the BJCG method is demonstrated using a 3D optimization problem

[1]  Michael R Wisnom,et al.  56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , 2015 .

[2]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[3]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[4]  Y. Xie,et al.  An improved method for evolutionary structural optimisation against buckling , 2001 .

[5]  T. Shi,et al.  A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration , 2011 .

[6]  K. Maute,et al.  Numerical instabilities in level set topology optimization with the extended finite element method , 2014 .

[7]  Youcef Saad,et al.  Projection methods for solving large sparse eigenvalue problems , 1983 .

[8]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[9]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[10]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[11]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[12]  Peter D. Dunning,et al.  Introducing the sequential linear programming level-set method for topology optimization , 2015 .

[13]  M. M. Neves,et al.  Generalized topology design of structures with a buckling load criterion , 1995 .

[14]  Evgueni E. Ovtchinnikov Jacobi Correction Equation, Line Search, and Conjugate Gradients in Hermitian Eigenvalue Computation II: Computing Several Extreme Eigenvalues , 2008, SIAM J. Numer. Anal..

[15]  Esben Lindgaard,et al.  On compliance and buckling objective functions in topology optimization of snap-through problems , 2013 .

[16]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[17]  U. Hetmaniuk,et al.  A comparison of eigensolvers for large‐scale 3D modal analysis using AMG‐preconditioned iterative methods , 2005 .

[18]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[19]  Peter D. Dunning,et al.  Level-Set Topology Optimization with Aeroelastic Constraints , 2015 .

[20]  L. V. Zyl,et al.  Use of eigenvectors in the solution of the flutter equation , 1993 .

[21]  Peter Benner,et al.  Locally Optimal Block Preconditioned Conjugate Gradient Method for Hierarchical Matrices , 2011 .

[22]  M. Kocvara,et al.  On the modelling and solving of the truss design problem with global stability constraints , 2002 .

[23]  Evgueni E. Ovtchinnikov,et al.  Computing several eigenpairs of Hermitian problems by conjugate gradient iterations , 2008, J. Comput. Phys..

[24]  G. I. N. Rozvany,et al.  Difficulties in truss topology optimization with stress, local buckling and system stability constraints , 1996 .

[25]  Erik Lund,et al.  Buckling topology optimization of laminated multi-material composite shell structures , 2009 .

[26]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[27]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[28]  Bret Stanford,et al.  Coupled aerostructural topology optimization using a level set method for 3D aircraft wings , 2015 .

[29]  M. Zhou,et al.  Difficulties in truss topology optimization with stress and local buckling constraints , 1996 .

[30]  Glen Mullineux,et al.  Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization , 2011 .

[31]  Jennifer A. Scott,et al.  HSL_MA97 : a bit-compatible multifrontal code for sparse symmetric systems , 2011 .

[32]  Alain Remouchamps,et al.  Discussion on some convergence problems in buckling optimisation , 2008 .

[33]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[34]  O. Sigmund,et al.  Efficient use of iterative solvers in nested topology optimization , 2010 .

[35]  Evgueni E. Ovtchinnikov,et al.  Jacobi Correction Equation, Line Search, and Conjugate Gradients in Hermitian Eigenvalue Computation I: Computing an Extreme Eigenvalue , 2008, SIAM J. Numer. Anal..

[36]  S. Rahmatalla,et al.  CONTINUUM TOPOLOGY OPTIMIZATION OF BUCKLING-SENSITIVE STRUCTURES , 2002 .

[37]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .