Discrete Painlevé equations and their appearance in quantum gravity

[1]  Athanassios S. Fokas,et al.  On the solvability of Painlevé II and IV , 1992 .

[2]  G. Moore Matrix Models of 2D Gravity and Isomonodromic Deformation , 2013 .

[3]  V. Papageorgiou,et al.  Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation , 1991 .

[4]  Athanassios S. Fokas,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The isomonodromy approach in the theory of two-dimensional quantum gravitation , 1990 .

[5]  A. Fokas,et al.  The dressing method, symmetries, and invariant solutions , 1990 .

[6]  A. Kitaev,et al.  Mathematical Aspects of the Non-Perturbative 2d Quantum Gravity , 1990 .

[7]  David J. Gross,et al.  A Nonperturbative Treatment of Two-dimensional Quantum Gravity , 1990 .

[8]  G. Parisi,et al.  A non-perturbative ambiguity free solution of a string model , 1990 .

[9]  S. Shenker,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[10]  F. David LOOP EQUATIONS AND NON-PERTURBATIVE EFFECTS IN TWO-DIMENSIONAL QUANTUM GRAVITY , 1990 .

[11]  É. Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[12]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[13]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[14]  Athanassios S. Fokas,et al.  A method of linearization for Painleve´ equations: Painleve´ IV, V , 1988 .

[15]  Alexander Its,et al.  Isomonodromic Deformation Method in the Theory of Painleve Equations , 1986 .

[16]  B. McCoy,et al.  Correlation functions of the transverse Ising chain at the critical field for large temporal and spatial separations , 1983 .

[17]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[18]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[19]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[20]  K. Ueno Monodromy preserving deformation of linear differential equations with irregular singular points , 1980 .

[21]  Mark J. Ablowitz,et al.  Exact Linearization of a Painlevé Transcendent , 1977 .

[22]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[23]  B. McCoy,et al.  Zero-Field Susceptibility of the Two-Dimensional Ising Model near T c . , 1973 .

[24]  P. Hartman Ordinary Differential Equations , 1965 .

[25]  E. L. Ince Ordinary differential equations , 1927 .