A Review of Implementing ADC in RFID Sensor

The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.

[1]  Junsheng Yu,et al.  RFID Technology and Applications , 2014 .

[2]  Arthur H. M. van Roermund,et al.  15.4 A 0.8V 10b 80kS/s SAR ADC with duty-cycled reference generation , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[3]  Hao Gao,et al.  21.2 A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conv-step ADC , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[4]  Stanislav A. Moshkalev,et al.  Silicon nitride thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition for micromechanical system applications , 2008 .

[5]  David Blaauw,et al.  A 120nW 8b sub-ranging SAR ADC with signal-dependent charge recycling for biomedical applications , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[6]  Chih-Cheng Hsieh,et al.  A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[7]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[8]  L. Y. Kupriyanov,et al.  Semiconductor sensors in physico-chemical studies , 1996 .

[9]  Stanislav A. Moshkalev,et al.  Low-temperature gas and pressure sensor based on multi-wall carbon nanotubes decorated with Ti nanoparticles , 2009 .

[10]  D.A. Hodges,et al.  All-MOS charge-redistribution analog-to-digital conversion techniques. II , 1975, IEEE Journal of Solid-State Circuits.

[11]  C. Hierold,et al.  Fabrication of single-walled carbon-nanotube-based pressure sensors. , 2006, Nano letters.

[12]  Le Ye,et al.  A 192nW inverter-based chopper instrumentation amplifier for micropower ECG applications , 2014, 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).

[13]  Dominique Morche,et al.  A 3–10fJ/conv-step 0.0032mm2 error-shaping alias-free asynchronous ADC , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[14]  Klaus Finkenzeller,et al.  Rfid Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification , 2003 .

[15]  Leonardo B. Campos,et al.  Applications of RFID and WSNs technologies to Internet of Things , 2014, 2014 IEEE Brasil RFID.

[16]  Li Yang,et al.  Nanotechnology Enables Wireless Gas Sensing , 2011, IEEE Microwave Magazine.

[17]  Rahul Bhattacharyya,et al.  Towards tag antenna based sensing - An RFID displacement sensor , 2009, 2009 IEEE International Conference on RFID.

[18]  Igor M. Filanovsky,et al.  Temperature sensor applications of diode-connected MOS transistors , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[19]  Franco Maloberti,et al.  A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[20]  R. E. Oosterbroek,et al.  Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane , 2005 .

[21]  Arthur H. M. van Roermund,et al.  11.1 An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[22]  Jan Craninckx,et al.  A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[23]  Arthur H. M. van Roermund,et al.  A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step , 2013, IEEE Journal of Solid-State Circuits.

[24]  Yan Zhang,et al.  A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step , 2012, 2012 IEEE International Solid-State Circuits Conference.

[25]  Eric A. M. Klumperink,et al.  A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[26]  Hirofumi Funabashi,et al.  Thermal micropressure sensor for pressure monitoring in a minute package , 2001 .

[27]  S. Tedjini,et al.  A Group-Delay-Based Chipless RFID Humidity Tag Sensor Using Silicon Nanowires , 2013, IEEE Antennas and Wireless Propagation Letters.

[28]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[29]  Seiji Akita,et al.  Carbon nanotube oscillators toward zeptogram detection , 2005 .

[30]  Raluca Savu,et al.  Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles , 2015, J. Sensors.

[31]  Michael P. Flynn,et al.  A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC , 2015, IEEE Journal of Solid-State Circuits.

[32]  Günther Lehner,et al.  Electromagnetic Field Theory for Engineers and Physicists , 2008 .

[33]  Hsin-Shu Chen,et al.  11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[34]  Etienne Perret,et al.  Radio-Frequency Identification Systems and Advances in Tag Design , 2009 .

[35]  A. Gobbi,et al.  Micro-reactors for characterization of nanostructure-based sensors. , 2012, The Review of scientific instruments.

[36]  Tadahiro Kuroda,et al.  A 0.5V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40nm CMOS , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[37]  P. Gray,et al.  All-MOS charge redistribution analog-to-digital conversion techniques. I , 1975, IEEE Journal of Solid-State Circuits.

[38]  I. Filanovsky,et al.  Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .

[39]  R. Weigel,et al.  Energy-Efficient Wireless Sensing Using a Generic ADC Sensor Interface Within a Passive Multi-Standard RFID Transponder , 2011, IEEE Sensors Journal.

[40]  Hsin-Shu Chen,et al.  A 3.2fJ/c.-s. 0.35V 10b 100KS/s SAR ADC in 90nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[41]  Christian Reinhold,et al.  Efficient Antenna Design of Inductive Coupled RFID-Systems with High Power Demand , 2007, J. Commun..

[42]  Kathleen Philips,et al.  26.2 A 5.5fJ/conv-step 6.4MS/S 13b SAR ADC utilizing a redundancy-facilitated background error-detection-and-correction scheme , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[43]  Chih-Cheng Hsieh,et al.  A 0.4V 2.02fJ/conversion-step 10-bit hybrid SAR ADC with time-domain quantizer in 90nm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[44]  G. Marrocco,et al.  Passive UHF RFID antennas for sensing applications: Principles, methods, and classifcations , 2013, IEEE Antennas and Propagation Magazine.

[45]  Chao Chen Design of a Child Localization System on RFID and Wireless Sensor Networks , 2010, J. Sensors.