Hierarchic plate and shell models based on p-extension

This paper is concerned with formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on (1) estimation of the relative error in energy norm; (2) equilibrium tests and (3) observation of the convergence of quantities of interest.

[1]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[2]  I. Katz,et al.  Hierarchal finite elements and precomputed arrays , 1978 .

[3]  A. L. Goldenveizer The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells , 1966 .

[4]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[5]  A. E. H. Love,et al.  The Small Free Vibrations and Deformation of a Thin Elastic Shell , 1887 .

[6]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[7]  D. J. Dawe,et al.  High-order triangular finite element for shell analysis , 1975 .

[8]  Stuart S. Antman,et al.  The Theory of Rods , 1973 .

[9]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[10]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[11]  B. A. Szabo Design of finite element software for reliability and robustness , 1987 .

[12]  V. V. Novozhilov,et al.  Thin shell theory , 1964 .

[13]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[14]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[15]  Barna A. Szabó,et al.  Estimation and Control Error Based on P-Convergence, , 1984 .

[16]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[17]  Stanley Locke,et al.  On the theory of plane stress , 1961 .

[18]  E. Reissner,et al.  Stress Strain Relations in the Theory of Thin Elastic Shells , 1952 .

[19]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[20]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[21]  Computational Efficiency of Plate Elements , 1977 .

[22]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[23]  Ted Belytschko,et al.  Improvements in 3-node triangular shell elements , 1986 .

[24]  A. L. Gol'denveizer Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity , 1962 .

[25]  G. M. Lindberg,et al.  A shallow shell finite element of triangular shape , 1970 .

[26]  J. L. Sanders,et al.  Theory of thin elastic shells , 1982 .

[27]  E. Reissner ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .

[28]  Joan M. Whittemore “Shells” , 1978, The Essential Guide to Beachcombing and the Strandline.

[29]  B. N. Cole,et al.  Plates and Shells , 1965, Nature.

[30]  J. Z. Zhu,et al.  The finite element method , 1977 .

[31]  K. O. Friedrichs,et al.  A boundary-layer theory for elastic plates , 1961 .

[32]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .