A wavelet frame coefficient total variational model for image restoration

In this paper, we propose a vector total variation (VTV) of feature image model for image restoration. The VTV imposes different smoothing powers on different features (e.g. edges and cartoons) based on choosing various regularization parameters. Thus, the model can simultaneously preserve edges and remove noises. Next, the existence of solution for the model is proved and the split Bregman algorithm is used to solve the model. At last, we use the wavelet filter banks to explicitly define the feature operator and present some experimental results to show its advantage over the related methods in both quality and efficiency.

[1]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[2]  R. Chan,et al.  Tight frame: an efficient way for high-resolution image reconstruction , 2004 .

[3]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[4]  L. Vese,et al.  A projected gradient algorithm for color image decomposition , 2008 .

[5]  Raymond H. Chan,et al.  Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..

[6]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[7]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[8]  G. Easley,et al.  Shearlet Based Total Variation for Denoising , 2022 .

[9]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  Michael K. Ng,et al.  Fast minimization methods for solving constrained total-variation superresolution image reconstruction , 2011, Multidimens. Syst. Signal Process..

[12]  Tony F. Chan,et al.  Total Variation Wavelet Thresholding , 2007, J. Sci. Comput..

[13]  Bin Dong,et al.  An Edge Driven Wavelet Frame Model for Image Restoration , 2017, Applied and Computational Harmonic Analysis.

[14]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[15]  Nilamani Bhoi,et al.  Total Variation Based Wavelet Domain Filter for Image Denoising , 2008, 2008 First International Conference on Emerging Trends in Engineering and Technology.

[16]  Raymond H. Chan,et al.  A Primal–Dual Method for Total-Variation-Based Wavelet Domain Inpainting , 2012, IEEE Transactions on Image Processing.

[17]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[18]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[19]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[20]  Du-Ming Tsai,et al.  An improved anisotropic diffusion model for detail- and edge-preserving smoothing , 2010, Pattern Recognit. Lett..

[21]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[22]  Chuanjiang He,et al.  A Variational Model with Barrier Functionals for Retinex , 2015, SIAM J. Imaging Sci..

[23]  Glenn R. Easley,et al.  Shearlet-Based Total Variation Diffusion for Denoising , 2009, IEEE Transactions on Image Processing.

[24]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[25]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[26]  Kristian Bredies,et al.  A Total Variation-Based JPEG Decompression Model , 2012, SIAM J. Imaging Sci..

[27]  Daniel Cremers,et al.  An approach to vectorial total variation based on geometric measure theory , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Sergio Amat,et al.  Fast Multiresolution Algorithms and Their Related Variational Problems for Image Denoising , 2010, J. Sci. Comput..

[29]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[30]  Lionel Moisan,et al.  Total Variation as a Local Filter , 2011, SIAM J. Imaging Sci..

[31]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[32]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[33]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[34]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[35]  Zhimin Zhao,et al.  A novel image denoising algorithm in wavelet domain using total variation and grey theory , 2010 .

[36]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[37]  John Paul Roop,et al.  A Fast Wavelet Multilevel Approach to Total Variation Image Denoising , 2009 .

[38]  Jean-François Aujol,et al.  Adaptive Regularization of the NL-Means: Application to Image and Video Denoising , 2014, IEEE Transactions on Image Processing.

[39]  Michael Unser,et al.  A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration , 2009, IEEE Transactions on Image Processing.

[40]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[41]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[42]  Ivan W. Selesnick,et al.  Artifact-Free Wavelet Denoising: Non-convex Sparse Regularization, Convex Optimization , 2015, IEEE Signal Processing Letters.

[43]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[44]  Adam M. Oberman,et al.  Anisotropic Total Variation Regularized L^1-Approximation and Denoising/Deblurring of 2D Bar Codes , 2010, 1007.1035.

[45]  Bin Dong,et al.  An Efficient Algorithm for ℓ0 Minimization in Wavelet Frame Based Image Restoration , 2013, J. Sci. Comput..

[46]  Guoliang Fan,et al.  Image denoising using a local contextual hidden Markov model in the wavelet domain , 2001, IEEE Signal Processing Letters.

[47]  Chuanjiang He,et al.  A Fast and Effective Algorithm for a Poisson Denoising Model With Total Variation , 2016, IEEE Signal Processing Letters.

[48]  Stanley Osher,et al.  Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising , 2007, IEEE Transactions on Image Processing.

[49]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[50]  Antonio Marquina,et al.  Nonlinear Inverse Scale Space Methods for Total Variation Blind Deconvolution , 2009, SIAM J. Imaging Sci..

[51]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .