Elastic waves and damage quantification in brittle material with evolving damage

This paper presents an analysis of the elastic wave propagation in brittle materials containing a distribution of microcracks. The crack-size distribution is assumed to be isotropic and exponential. The evolution of the mean crack size is described by a rate-dependent damage model based on the mechanics of microcracks. The analysis shows that the elastic wave speeds of a brittle material are sensitive to the change in the mean size of the distributed cracks in the material. The dependence of the wave speeds on the applied strain can also be used to validate the damage model. An example of a brittle ceramic under uniaxial-strain tension is presented to show quantitatively the changes in the longitudinal and shear wave speeds as functions of the applied strain. Explicit relations between the wave speeds and the mean crack size in the material are given.

[1]  Mohsen Shahinpoor,et al.  High-Pressure Shock Compression of Solids III , 2011 .

[2]  D. Wiegand,et al.  Pressure and friction dependent mechanical strength – cracks and plastic flow , 2011 .

[3]  Q. Zuo,et al.  Crack-mechanics based brittle damage model including nonlinear equation of state and porosity growth , 2011 .

[4]  Q. Zuo,et al.  A crack-mechanics based model for damage and plasticity of brittle materials under dynamic loading , 2010 .

[5]  Q. Zuo,et al.  Modeling Damage in Concrete Pavements and Bridges , 2010 .

[6]  Q. Zuo,et al.  Stability and well-posedness of a rate-dependent strain-softening plasticity model , 2010 .

[7]  Q. Zuo On the plastic wave speeds in rate-independent elastic–plastic materials with anisotropic elasticity , 2010 .

[8]  Q. Zuo Upper bound on wave speeds in anisotropic materials based on elastic projection operators , 2009 .

[9]  Q. Zuo,et al.  Modeling anisotropic damage in an encapsulated ceramic under ballistic impact , 2008 .

[10]  M. W. Hildyard,et al.  Manuel Rocha Medal Recipient Wave interaction with underground openings in fractured rock , 2007 .

[11]  R. Rajapakse,et al.  Microplane modelling of shape memory alloys , 2007 .

[12]  J. D. Kershner,et al.  Impact initiation of explosives and propellants via statistical crack mechanics , 2006 .

[13]  M. W. Lewis,et al.  A rate-dependent damage model for brittle materials based on the dominant crack , 2006 .

[14]  J. Dienes On the mean cluster size of a network of cracks , 2006 .

[15]  V. Giurgiutiu Structural Health Monitoring: with Piezoelectric Wafer Active Sensors , 2007 .

[16]  S. Šimunović,et al.  A computational approach for prediction of the damage evolution and crushing behavior of chopped random fiber composites , 2004 .

[17]  Vladimir E. Fortov,et al.  High-Pressure Shock Compression of Solids VII , 2004 .

[18]  Hong Hao,et al.  Anisotropic dynamic damage and fragmentation of rock materials under explosive loading , 2003 .

[19]  R. M. Hackett,et al.  An implicit finite element material model for energetic particulate composite materials , 2000 .

[20]  Jian Zhao,et al.  Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses , 2000 .

[21]  J. K. Dienes Inferring Three-Dimensional Crack Statistics from Two-Dimensional Data , 2000, Adv. Appl. Math..

[22]  Blaine W. Asay,et al.  A constitutive model for the non-shock ignition and mechanical response of high explosives , 1998 .

[23]  K. Hjelmstad,et al.  Bounds and approximations for elastodynamic wave speeds in tetragonal media , 1998 .

[24]  Q. Zuo,et al.  Bounds and approximations for elastic wave speeds in cubic crystals , 1997 .

[25]  Jean-François Dubé,et al.  Rate Dependent Damage Model for Concrete in Dynamics , 1996 .

[26]  Arunachalam M. Rajendran,et al.  Modeling the shock response of silicon carbide, boron carbide and titanium diboride , 1996 .

[27]  J. K. Dienes,et al.  A Unified Theory of Flow, Hot Spots, and Fragmentation with an Application to Explosive Sensitivity , 1996 .

[28]  H. Schreyer,et al.  A Thermodynamically Consistent Description of Dynamic Continuum Damage , 1996 .

[29]  Q. H. Zuo,et al.  Anisotropic Yield Surfaces Based on Elastic Projection Operators , 1995 .

[30]  H. Schreyer,et al.  A note on pure-longitudinal and pure-shear waves in cubic crystals , 1995 .

[31]  Howard L. Schreyer,et al.  A thermodynamically consistent framework for theories of elastoplasticity coupled with damage , 1994 .

[32]  Arunachalam M. Rajendran,et al.  Modeling the impact behavior of AD85 ceramic under multiaxial loading , 1994 .

[33]  Howard L. Schreyer,et al.  Analytical Solutions for Nonlinear Strain-Gradient Softening and Localization , 1990 .

[34]  H. Schreyer,et al.  Combined Plasticity and Damage Mechanics Model for Plain Concrete , 1990 .

[35]  J. N. Johnson,et al.  A constitutive model for the dynamic response of brittle materials , 1990 .

[36]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[37]  J. C. Simo,et al.  On continuum damage-elastoplasticity at finite strains , 1989 .

[38]  H. Schreyer,et al.  An anisotropic damage model with dilatation for concrete , 1988 .

[39]  Zhen Chen,et al.  Simulation of soil-concrete interfaces with nonlocal constitutive models , 1987 .

[40]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[41]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[42]  Zhen Chen,et al.  One-Dimensional Softening With Localization , 1986 .

[43]  L. M. Taylor,et al.  Microcrack-induced damage accumulation in brittle rock under dynamic loading , 1986 .

[44]  D. R. Curran,et al.  A Continuum Model for Dynamic Tensile Microfracture and Fragmentation , 1985 .

[45]  M. E. Kipp,et al.  Geometric statistics and dynamic fragmentation , 1985 .

[46]  Statistical theory of fragmentation processes , 1985 .

[47]  L. S. Costin,et al.  A microcrack model for the deformation and failure of brittle rock , 1983 .

[48]  J. Dienes On the stability of shear cracks and the calculation of compressive strength , 1983 .

[49]  J. Hudson Wave speeds and attenuation of elastic waves in material containing cracks , 1981 .

[50]  Lynn Seaman,et al.  Computational models for ductile and brittle fracture , 1976 .

[51]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[52]  Bernard Budiansky,et al.  Seismic velocities in dry and saturated cracked solids , 1974 .