Negatively charged crown ethers for binding paraquat in water

[1]  Feihe Huang,et al.  A new cryptand/paraquat [2]pseudorotaxane , 2010 .

[2]  Jing Cao,et al.  Complexation of a pentiptycene-based tweezer-like receptor with paraquat derivatives: ion-controlled binding and release of the guests. , 2009, Organic letters.

[3]  Dennis D. Cao,et al.  Linear pi-acceptor-templated dynamic clipping to macrobicycles and [2]rotaxanes. , 2009, Angewandte Chemie.

[4]  Feihe Huang,et al.  Three-dimensional bis(m-phenylene)-32-crown-10-based cryptand/paraquat catenanes. , 2009, Organic & biomolecular chemistry.

[5]  Chien‐Chen Lai,et al.  A guanidinium ion-based anion- and solvent polarity-controllable molecular switch. , 2009, Organic letters.

[6]  R. García,et al.  Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. , 2009, Environment international.

[7]  Feihe Huang,et al.  Anion-controlled ion-pair recognition of paraquat by a bis(m-phenylene)-32-crown-10 derivative heteroditopic host. , 2009, The Journal of organic chemistry.

[8]  Sheaw-Guey Cheng,et al.  Simultaneous detection and quantitation of highly water-soluble herbicides in serum using ion-pair liquid chromatography-tandem mass spectrometry. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[9]  J. Fraser Stoddart,et al.  Big and little Meccano , 2008 .

[10]  Feihe Huang,et al.  A bis(m-phenylene)-32-crown-10-based fluorescence chemosensor for paraquat and diquat , 2008 .

[11]  D. Fitzmaurice,et al.  Introducing negative charges into bis-p-phenylene crown ethers: a study of bipyridinium-based [2]pseudorotaxanes and [2]rotaxanes. , 2008, Chemistry.

[12]  Saeed I. Khan,et al.  Templated synthesis of desymmetrized [2]catenanes with excellent translational selectivity. , 2007, Organic letters.

[13]  W. Goddard,et al.  Mechanism of oxidative shuttling for [2]rotaxane in a Stoddart-Heath molecular switch: density functional theory study with continuum-solvation model. , 2006, The journal of physical chemistry. B.

[14]  Q. Zong,et al.  Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives. , 2006, Organic letters.

[15]  Li‐Zhu Wu,et al.  Self-assembly of a novel series of hetero-duplexes driven by donor-acceptor interaction , 2005 .

[16]  Feihe Huang,et al.  Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives. , 2005, The Journal of organic chemistry.

[17]  Feihe Huang,et al.  Synthesis of a symmetric cylindrical bis(crown ether) host and its complexation with paraquat. , 2005, The Journal of organic chemistry.

[18]  Feihe Huang,et al.  Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. , 2004, Journal of the American Chemical Society.

[19]  W. M. Leevy,et al.  Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. , 2004, Chemical reviews.

[20]  G. Ercolani,et al.  Catalysis in the self-assembly of [2]rotaxanes and [2]pseudorotaxanes. Effect of the length of polyethereal side arms and terminal stoppers. , 2004, The Journal of organic chemistry.

[21]  Feihe Huang,et al.  Ion pairing in fast-exchange host-guest systems: concentration dependence of apparent association constants for complexes of neutral hosts and divalent guest salts with monovalent counterions. , 2003, Journal of the American Chemical Society.

[22]  Feihe Huang,et al.  A cryptand/bisparaquat [3]pseudorotaxane by cooperative complexation. , 2003, Journal of the American Chemical Society.

[23]  Feihe Huang,et al.  First pseudorotaxane-like [3]complexes based on cryptands and paraquat: self-assembly and crystal structures. , 2003, Journal of the American Chemical Society.

[24]  T. R. Roberts,et al.  Deactivation of the biological activity of paraquat in the soil environment: a review of long-term environmental fate. , 2002, Journal of agricultural and food chemistry.

[25]  Andrew J. P. White,et al.  The balance between electronic and steric effects in the template-directed syntheses of [2]catenanes , 2001 .

[26]  David J. Williams,et al.  C-H...O INTERACTIONS AS A CONTROL ELEMENT IN SUPRAMOLECULAR COMPLEXES : EXPERIMENTAL AND THEORETICAL EVALUATION OF RECEPTOR AFFINITIES FOR THE BINDING OF BIPYRIDINIUM-BASED GUESTS BY CATENATED HOSTS , 1999 .

[27]  David J. Williams,et al.  A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly. , 1998, Angewandte Chemie.

[28]  J. F. Stoddart,et al.  The Slipping Approach to Self-Assembling [n]Rotaxanes† , 1997 .

[29]  Michael J. Marsella,et al.  Design of chemoresistive sensory materials: polythiophene-based pseudopolyrotaxanes , 1995 .

[30]  David J. Williams,et al.  From Solid-State Structures and Superstructures to Self-Assembly Processes , 1994 .

[31]  H. Gibson,et al.  Difunctional paraquat dications (viologens) and their crown complexes: a new class of rotaxane monomers , 1992 .

[32]  David J. Williams,et al.  The self-assembly of complexes with [2]pseudorotaxane superstructures , 1991 .

[33]  S. Hassan,et al.  Amphetamine selective electrodes based on dibenzo-18-crown-6 and dibenzo-24-crown-8 liquid membranes , 1989 .

[34]  David J. Williams,et al.  Complexation of Diquat by a bisparaphenylene-34-crown-10 derivative , 1987 .

[35]  David J. Williams,et al.  The dependence of the solid state structures of bisparaphenylene-(3n+ 4)-crown-n ethers upon macrocyclic ring size , 1987 .

[36]  David J. Williams,et al.  Complexation of Paraquat and Diquat by a bismetaphenylene-32-crown-10 derivative , 1987 .

[37]  David J. Williams,et al.  Complexation of diquat and paraquat by macrocyclic polyethers incorporating two dibydroxynaphthalene residues , 1987 .